
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

FORM 836 (10/96)

LA-UR-PENDING

Approved for public release;
distribution is unlimited.

Title: Identifying and Eliminating the Performance Variability on
the ASCI Q Machine

Author(s): Adolfy Hoisie, CCS-3
Darren J. Kerbyson, CCS-3
Scott Pakin, CCS-3
Fabrizio Petrini, CCS-3
Harvey J. Wasserman, CCS-3
Juan Fernandez-Peinador, CCS-3

Submitted to:

Los Alamos
NATIONAL LABORATORY

QB Testing/CCS-3 2 01/02/03

QB Testing/CCS-3 2 01/02/03

Identifying and Eliminating the Performance Variability
on the ASCI Q Machine

Adolfy Hoisie, Darren J. Kerbyson, Scott Pakin, Fabrizio Petrini, Harvey J.

Wasserman, Juan Fernandez-Peinador

Performance and Architecture Lab (PAL)
CCS-3

Los Alamos National Laboratory

Summary

This report is split into several sections:

1 – examines the performance of SAGE on QB
2 – examines the factors that contribute to the achievable application performance on each node
3 – details the performance factors across the system
4 – Gives results from a detailed model of the performance factors
5 – Gives an indication of possible application performance that may be achievable if the
identified performance factors are removed
6 – Recommendation to improve the performance, decrease its variability and overall improving
the system software
7 – An appendix presenting a Quadrics network debugging scenario which we have utilized
consistently on QB in order to reveal potential hardware problems. We strongly recommend that
the system people include this procedure in their standard running scripts and run it periodically.
First time we utilized it we found many Quadrics switches that were not reporting errors to the
RMS database and were not operating optimally for a variety of reasons. We guess that this
situation may exist on QA too, as we never had a chance of debugging the network on that
machine.

The analysis is quite complex in this work. It flows as follows:

First we measure the performance of SAGE and note 1. its departure from the accurate modeled
performance (i.e., the expected performance), and 2. its variability, seemingly random. We also
compare the performance of SAGE when using 1,2,3 and 4 processors per node against the
model. The performance degradation and its variability are present when using 4 processors per
node only. This is presented in section 1.

With that in mind, we proceed to identifying the factors that contribute to the performance
degradation observed, in section 2. For instance, profiling SAGE in terms of the communication
kernels it utilizes, we note that apparently allreduce is responsible for the performance
degradation and variability, while all the other communication kernels exhibit expected
performance. Furthermore, since allreduce is composed of a reduce and a broadcast, we
analyze the performance of each of these 2 kernels to observe that in fact the performance of
reduce is suboptimal and variable.
Next logical step was to attempt to improve the performance of reduce, both algorithmically and
by optimizing the runtime environment, as detailed in section 2.1. The overall improvement of

QB Testing/CCS-3 3 01/02/03

QB Testing/CCS-3 3 01/02/03

reduce, a whopping factor of 7 though didn’t seem to lead to overall improvements in the
performance of SAGE.

We then proceeded with a groundbreaking analysis of the computational nodes, the first of it kind
that we are aware of for large-scale parallelism, beginning in section 2.2.
We designed and implemented a set of benchmarks to reveal and quantify the level of noise in the
nodes. We quantify all the perturbations in the system in terms of frequency and duration, assign
them to system processes (kernel or daemons), and link these perturbations to “types” of nodes
with selected functionality in the system. Many interesting observations are made here: all nodes
are affected by one or more types of periodic events, the frequency and duration of these events is
widely different, the I/O clusters and rms impose a coarse-grain periodicity, etc. Knowing all
these events that contribute to performance degradation and variability allowed us to write an
accurate discrete-event simulator for analyzing these issues. Of course, since the proper
functioning of the system requires these processes to run on it, further analysis would not be
possible without the simulator as experiments are not possible.

With the simulator we analyze the “what if” scenarios, when one or more sources of noise are
eliminated, in section 4. There are many counterintuitive observations here, for example that the
positive impact from removing the seemingly bigger sources of noise is small. In this section we
reveal the “real” source of variability: the compounded effect of the system events leading to
serious synchronization problems at large scale. Hence, in fact, the degradation in the
performance of reduce is due to synchronization delays and not to communication delays!

In section 5 we relate back this quantified noise into the SAGE model showing that it accounts
for all the performance variability described in section 1.

In the last section we make some recommendation for improving the situation, although it is now
crystal clear that a 100% solution is not achievable, since not all system activity can be removed.

We have identified the root causes of the performance degradation and variability: system
activity on the nodes (kernel and daemons), and not network traffic delays.

We claim that with this report we completely and conclusively clarified the problems of Q
variability that have been widely noticed on the system but not comprehensively analyzed
before this work.

QB Testing/CCS-3 4 01/02/03

QB Testing/CCS-3 4 01/02/03

1. SAGE Performance

SAGE, version 20001220 was executed on the 1024 node QB system. The scaling behavior of
SAGE running test case “timing.input” was recorded for a number of test cases.

- Scaling up to 4096 PEs using 1 Rail (Figure 1.1)
- Scaling up to 4096 PEs using 2 Rails (Figure 1.2)
- Scaling when using either 1 PE, 2 PEs, 3PEs, or 4PEs per node (Figure 1.3, 1.4, and 1.5)
- Performance breakdown of communication components (Figure 1.6)
- 1000 cycle run to examine variability on 3584 PEs (Figure 1.7, and Figure 1.8)

In all cases the performance of SAGE was recorded using the cycle time metric – the time taken
to execute a single cycle of timing.input.

From these sets of measurements the components that add to the variability of the performance of
SAGE at higher PE counts were identified. As will be seen there is an unexpected increase in the
time spent in the allreduce collective communications with scaling (especially at and above 1024
PEs).

1.1 Scaling using 1 Rail

The performance of SAGE using 1-rail of QB is shown in Figure 1.1. It can be seen that the
performance is almost identical to that earlier in September. It should also be noted that the
performance of SAGE is significantly above that expected as given by the CCS-3 performance
model. At 1024 PEs the performance is 14% worse than expected rising to 70% worse at 4096
PEs.

SAGE on QB 1RAIL (timing.input)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 10 100 1000 10000
PEs

C
yc

le
 T

im
e

(s
)

Model

21-Sep

25-Nov

Figure 1.1 – SAGE scaling using 1 Rail (timing.input)

QB Testing/CCS-3 5 01/02/03

QB Testing/CCS-3 5 01/02/03

1.2 Scaling using 2 Rails

The performance of SAGE was also measured when using 2-Rails and is compared to the
performance on 1 RAIL in Figure 1.2. It can be seen that the 2-Rail performance is slightly better
than using 1-Rail at 64 PEs and above. This actually corresponds to an improvement expected
from the performance model. However, above 1024PEs, the performance is still significantly
worse than expected – the same situation as when using 1-rail.

SAGE on QB (timing.input)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 10 100 1000 10000
PEs

C
yc

le
 T

im
e

(s
)

1 Rail

2 Rail

Figure 1.2 – Comparison of the SAGE scaling using 1 and 2 Rails (timing.input)

1.3 Scaling using 1, 2, 3, and 4 PEs per node

In order to investigate the performance of SAGE further, we measured the performance when
using a different number of PEs per node. In this analysis, we varied the number of PEs per node:
1, 2, 3, or 4. The measured performance is shown in Figure 1.3.

It can be seen that the performance of SAGE gets worse as more PEs per node are used. When
using 1, 2, or 3 PEs per node the scaling behavior is reasonable. However, when using all 4 PEs
per node the performance is significantly worse.

QB Testing/CCS-3 6 01/02/03

QB Testing/CCS-3 6 01/02/03

Sage on QB (timing.input)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 10 100 1000 10000
#PEs

C
yc

le
 T

im
es

 (
s)

1PEsPerNode

2PEsPerNode

3PEsPerNode

4PEsPerNode

Figure 1.3 – SAGE scaling using 1PE, 2PEs, 3PEs, or 4PEs per node

The difference between the measured performance for using 1PE, 2PEs, 3PEs, and 4PEs per node
is compared to that expected from the performance model in Figure 1.4. Note that only the
difference between the measured performance and that expected by the model is shown in Figure
1.4. It can be seen that the measured data is very close to that expected when using 1PE, 2PEs,
and 3PEs per node. However there is a large deviation when using 4PEs per node indicating a
performance problem.

Sage on QB (timing.input)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10 100 1000 10000

#PEs

C
yc

le
 T

im
es

 (
s)

1PEsPerNode

2PEsPerNode

3PEsPerNode

4PEsPerNode

Figure 1.4 – Difference between measurement and model for 1PE, 2PEs, 3PEs, and 4PEs per

node.

QB Testing/CCS-3 7 01/02/03

QB Testing/CCS-3 7 01/02/03

It is also interesting to note the effective performance that can be achieved when using less than
the maximum number of PEs per node on SAGE. This is illustrated in Figure 1.5. When using
more than approximately 1024 PEs a higher performance can be achieved using 3PEs/node than
4PEs/node. The exact cross-over point is dependant upon the exact configuration of the problem
being processed by SAGE.

SAGE (timing.input)

0

10000

20000

30000

40000

50000

60000

1 10 100 1000 10000
PEs

E
ff

ec
ti

ve
 C

C
/s

/P
E

ASCI White (Measured)

ASCI Q (Measured 4PE/Node)

ASCI Q (Measured 3PE/Node)

Figure 1.5 – Relative performance on SAGE when using 3PEs/node and 4PE/node

1.4 Time breakdown (1-rail scaling)

In order to understand why the performance of SAGE is not as expected, the time spent in the
different communication aspects of SAGE were recorded in a scaling study using one rail. The
communication components are separated into token_get and token_put (for the data gathers
and scatters between spatially neighboring processors), and token_allreduce, token_bcast,
and token_reduction (collective operations). The time taken in each of these components is
shown in Figure 1.6.

QB Testing/CCS-3 8 01/02/03

QB Testing/CCS-3 8 01/02/03

SAGE on QB - Breakdown (timing.input)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 10 100 1000 10000
#PEs

Ti
m

e/
cy

c
(s

)
token_allreduce

token_bcast

token_get

token_put

token_reduction

cyc_time

Figure 1.6 – Component times in SAGE scaling (timing.input)

The scaling of the gather-scatter operations (token_put and token_get) are as expected.
However the scaling of the collective operations, in particular the token_allreduce, are much
worse than expected when using more than 256 PEs. This can be clearly seen when considering
the cycle_time in comparison to the model expectations in Figure 1.1. The difference between
the model and the measurements can be attributed to the token_allreduce time in Figure
1.6.

1.5 Performance Variability of SAGE

In a further performance study, SAGE was executed for 1000 cycles using timing.input on
3584 PEs. The time taken for each cycle was recorded along with the time components as used in
Figure 1.6. Figure 1.7 shows the cycle time for all cycles along with the performance model
estimate. The distribution of the cycle time is shown in a histogram in Figure 1.8.

The cycle time for SAGE when using timing.input should be constant as all cycles effectively
perform the same processing. However, as can be seen in Figure 1.7 there is considerable
variability in the performance from cycle to cycle which can be attributed to the allreduce
operations.

The histogram shown in Figure 1.8 indicates that the best cycle time observed over all the cycles
is ~0.75s, which is very close to the performance model prediction of 0.68s. This indicates that in
a very small percentage of cycles the performance obtained is as expected, but in the majority of
cycles the performance is worse, sometimes by more than a factor of 3!

QB Testing/CCS-3 9 01/02/03

QB Testing/CCS-3 9 01/02/03

SAGE QB 3584 PEs (timing.input)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 101 201 301 401 501 601 701 801 901
Cycle Number

C
yc

le
 T

im
e

(s
)

Cyc_sec

Model

Figure 1.7 – Cycle time for 1000 cycles of SAGE (timing.input)

SAGE GQ 3584 PEs (timing.input)

0

20

40

60

80

100

120

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 2

Histogram Bins (S) - lower bound

Fr
eq

ue
nc

y

Figure 1.8 – Histogram of the cycle times for 1000 cycles of SAGE (timing.input)

1.6 Summary of SAGE performance

The performance of SAGE is less than expected. The cycle time is above expectation at 1024 PEs
and above (Figure 1.1) when using 4 PEs per node. The performance is 14% worse than expected
at 1024 PEs and 70% worse than expected at 4096PEs.

QB Testing/CCS-3 10 01/02/03

QB Testing/CCS-3 10 01/02/03

When using a lower number of PEs per node the performance is as expected (Figure 1.4). There
is no performance degradation on larger PE counts.

The degradation is not constant across cycles but varies significantly (Figure 1.7). This seems to
correspond to performance variability reported elsewhere.

The degradation in performance and the performance variability most likely result from the
collective operations (specifically allreduce).

In the following sections, the performance degradation will be analyzed in a comprehensive
manner, quantified and solutions for improvements presented.

QB Testing/CCS-3 11 01/02/03

QB Testing/CCS-3 11 01/02/03

2. Identification of Performance Factors

In order to identify why application performance such as that observed on SAGE is not as good
as expected, we undertook a number of performance studies. To simplify this process we
concerned ourselves with the examination of smaller, individual operations. Since it appeared that
SAGE was adversely affected by the performance of the allreduce collective operation several
attempts were made to improve the performance of collectives on the Quadrics network.

2.1 Optimizing the Allreduce

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800 900 1000

La
te

nc
y

m
s

Nodes

Allreduce Latency

1 process per node
2 processes per node
3 processes per node
4 processes per node

Figure 2.1 allreduce latency, varying the number of nodes and processes per node

Figure 2.1 shows the performance of the allreduce when executed on an increasing number of
nodes. The graph clearly shows that the problem arises when we use all four processors per node.
With up to three processes the allreduce is fully scalable and takes, on average, less than
300µs. With four processors the latency surges to more than 3ms on the full QB machine.

We made several attempts to optimize the allreduce in the four-processes case, and we were
able to substantially reduce the worst case. In order to do that we used a different synchronization
mechanism. In the existing implementation the processes in the reduce tree poll while waiting for
incoming messages. By changing the synchronization mechanism to poll for a limited time
(100µs) and then block, we were able to improve the latency by a factor of 7.

Extensive testing was made on the modified collectives but resulted in only a marginal
improvement in performance. So we were not able to link the performance variability
problems to glitches in either the MPI implementation or the network. Having thus ruled out

QB Testing/CCS-3 12 01/02/03

QB Testing/CCS-3 12 01/02/03

MPI and the network as sources of performance loss we now proceed to scrutinize the nodes
themselves.

2.2 Analyzing the Computational Noise

A further test was designed to examine the computational performance of each processor within a
node. The goal of this test was to narrow down the search space and to come up with a simple
benchmark to expose the variability problems. The benchmark works as follows. Each node
performs a sequence of synthetic computations, each one carefully calibrated at the granularity of
1ms, for a total run time of 1000 seconds. Using a small granularity is important because both
SAGE and Sweep3D may display such granularity. During this purely computational phase, there
is no message exchange or I/O and the benchmark is run on all 4096 processors of QB. As shown
in Figure 2.2 we take two types of measurements. In the coarse-grained experiment (Figure
2.2(a)) we measure the entire run time of each process, which in the ideal case should be 1000
seconds. In the fine-grained experiment (Figure 2.2(b)) we measure the run time of each single
chunk of computation, which should always be 1ms in a noiseless machine. N.B.: On 2DEC2002
this test initially identified a node containing processors running at 1GHz, i.e., a node that did not
successfully get upgraded to 1.25GHz!
.

P1

P2

P3

P4

P1

P2

P3

P4

TIMETIME

φ

START END

START END

START END

a) one large computation b) many smaller computations

Figure 2.2 Measurement of the time taken to perform a computation task on each processor.

The total normalized run time for the coarse grained measurement is shown in Figure 2.3 for all
of the processors in the system. Due to interference from non-application activities within each
node, the processing time can be longer and can vary from process to process. The aggregate
overhead experienced by each process is low, with a maximum delay of 2.5% (which amount to
a slowdown of 25 seconds over a total runtime of 1000 seconds).

QB Testing/CCS-3 13 01/02/03

QB Testing/CCS-3 13 01/02/03

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 r
un

tim
e

Processes

Computational Overhead (Coarse Grained)

ideal

Figure 2.3 – Average time to process a 1ms computation task on each processor on QB

A particular aspect of these results is that they are analyzed on a per-process basis. This does not
show the true nature of the performance effects that are occurring. By analyzing the data on a per
node basis we can gather more insight into the performance variability problem. Figure 2.4
shows the results of the fine grained experiment. In this experiment we run 1 million iterations,
each with a granularity of 1ms. As in the previous experiment, we do not perform any
communication or I/O. At the end of each iteration we measure the actual run time, and for each
iteration that takes more than twice the expected run time, we sum the unexpected overhead,
expressed as the actual run time minus the threshold, for each node. Looking at the graph we can
see that the noise has a regular pattern. Every partition of 32 nodes contains some nodes that are
consistently noisier than others.

QB Testing/CCS-3 14 01/02/03

QB Testing/CCS-3 14 01/02/03

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 200 400 600 800 1000

S
lo

w
do

w
n

(p
er

ce
nt

ile
)

Nodes

Computational Overhead (Fine Grained)

Figure 2.4 – Variation in computation time on a per-node basis.

Figure 2.5 expands the previous graph in order to pursue more detail on one of the clusters. We
can see that all nodes suffer from a moderate background noise and that node 0 (the cluster
manager), node 1 (the quorum node), and node 31 are slower than the others. This pattern
repeats every 32 nodes. Therefore, in the rest of this section, “0” means “0+32k”, “1” means
“1+32k”, and “31” means “31+32k”, where k is a nonnegative integer.

QB Testing/CCS-3 15 01/02/03

QB Testing/CCS-3 15 01/02/03

Compute Nodes

Node 1

Node 0

Node 31

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 5 10 15 20 25 30

S
lo

w
do

w
n

(p
er

ce
nt

ile
)

Nodes

1.0

Computational Overhead in a 32 Node Cluster

Figure 2.5– Examination of the overhead per node within each 32-node partition.

In order to understand the nature of this noise, we plot the latency distribution for four classes of
nodes: the standard cluster node, node 0, 1 and 31. In Figure 2.6 we can see that the noise on
each node has a well defined pattern, with classes of events that happen regularly with well
defined frequencies and durations.

For example, on any cluster node we can identify two events that happen regularly every 24 and
42 seconds, and whose duration is, respectively, 16 and 19ms. This means that a slice of
computation that should take 1ms occasionally takes 16 or 19ms. The process that experience this
type of interruption will freeze for the corresponding amount of time. Intuitively, these events can
be traced back to some regular system activity as daemons or the kernel itself.

19 ms every 42 s

periodic background noise

16 ms every 24 s

1

32

1024

32768

0 2 4 6 8 10 12 14 16 18 20
Latency (ms)

Ite
m

s

Latency Distribution on a Cluster Node
3.35e+07

1.04e+06

200 msec
every 70 s

100 msec
every 125 s

177 msec
every 125 s

10 msec
every 30 s

1

32

1024

32768

0 50 100 150 200 250
Latency (ms)

Ite
m

s

Latency Distribution on Node 0

1.04e+06

3.35e+07

a) on a ‘normal’ cluster node b) on Node 0 in a cluster

QB Testing/CCS-3 16 01/02/03

QB Testing/CCS-3 16 01/02/03

335 ms every 60 s

periodic background noise

1

32

1024

32768

0 50 100 150 200 250 300 350
Latency (ms)

Latency Distribution on Node 1

Ite
m

s
3.35e+07

1.04e+06

periodic background noise

7 msec every second

1

32

1024

32768

0 5 10 15 20 25
Latency (ms)

Latency Distribution on Node 31

Ite
m

s

3.35e+07

1.04+06

c) on Node 1 in a cluster d) on Node 31 in a

cluster
Figure 2.6 – Identification of the events that cause delay on the different types of nodes.

Node 0 displays four different types of activities, all happening at regular intervals, with a
duration that can be up to 200 ms. Node 1 experiences a few heavyweight interrupts, every 60
seconds, that freeze the process for about 335 ms (two orders of magnitude larger than the cycle
time of many ASCI codes).

On node 31 we can identify another pattern of intrusion, with frequent interrupts (every second)
and a duration of 7ms. Table 2.1 summarizes the characteristics of the main components of the
noise in the system.

Node ID
(within a 32-node
partition)

Event Period
(seconds)

Event Duration
(milli-seconds)

All 24 16
All 42 1.9
0 30 10
0 125 100
0 125 177
0 70 200
1 60 335
31 1 7

Table 2.1 – Summary of Identified Events – periods and durations across nodes within each
partition.

QB Testing/CCS-3 17 01/02/03

QB Testing/CCS-3 17 01/02/03

3. Effect on System Performance

Figure 3.1 provides some intuition on the potential effects of these delays on applications that are
fine-grained and bulk-synchronous. In such a case, a delay in a single process slows down the
whole job. Notice that even though any given process in Figure 3.1 is delayed only once, the
collective-communication operation (represented by the black lines) is delayed in every iteration.
When we run a job on a large number of processors, the likelihood of having at least one slow
process per iteration increases. For example, if only one process out of 4096 experiences a delay
of 100 ms, on a job that barrier synchronizes every 1ms, then the whole application will run 100
times slower.

P1

P2

P3

P4

TIME

Figure 3.1: Example of how a slow process delays the entire application

Figure 3.2 shows the performance of the allreduce and the barrier in a synthetic parallel
benchmark that computes for either 0, 1, or 5ms and performs an allreduce or a barrier at the
end of each compute step. In an ideal, scalable, system we should not see any difference in the
run time of the collective communication. What we see is that the completion time
increases linearly with the number of nodes and with the computational granularity. This is
due to skew caused by noise within the node, not by any problems in either the network or
the communication library. Larger grain sizes induce longer latencies because they increase the
likelihood that background load will strike during at least one process’s compute time.
The graph below also shows that both allreduce and barrier exhibit similar performance.
Given that the barrier is executed using the hardware broadcast, whose execution is almost
instantaneous (a few µs), the only reason for this performance degradation is the skew
accumulated within the processing nodes.

QB Testing/CCS-3 18 01/02/03

QB Testing/CCS-3 18 01/02/03

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800 900 1000

La
te

nc
y

m
s

Nodes

Allreduce and Barrier Latency, 4 Processes per Node

allreduce, no computation
all reduce, 1 ms granularity
allreduce, 5 ms granularity
barrier, no computation
barrier, 1 ms granularity
barrier, 5 ms granularity

Figure 3.2: allreduce and barrier latency with varying amounts of intervening computation

QB Testing/CCS-3 19 01/02/03

QB Testing/CCS-3 19 01/02/03

4. Modeling System Events

From the events we identified in Section 2, we have developed a discrete-event simulator that
takes into account all the classes of events identified in the previous section and provides a
realistic lower bound on the execution time. We validated the simulator for the measured events,
and we can see from Figure 4.1 below that the model is close to the experimental data. The gap
between the model and the data at high node counts can be explained by the presence of a few
especially noisy—probably misconfigured—partitions in the second half of the cluster.

Using the simulator we can predict the performance gain that can be obtained by selectively
removing the sources of the noise. For example, if we remove the noise generated by either node
0, 1 or 31, we only get a marginal improvement, approximately 15%. If we remove all three
“special” nodes, 0, 1 and 31, we get an improvement of 35%. However, the noise in the system
dramatically reduces when we eliminate the background noise on the compute nodes. Although
Table 2.1 showed that the background jobs running on all nodes tends to have an order of
magnitude shorter duration than those running on only the cluster-manager or quorum nodes, the
short period and sheer number of nodes running those background jobs cover the first-order effect
of the observed performance loss.

1

2

3

4

5

6

7

8

0 200 400 600 800 1000

L
a

te
n

c
y
 m

s

Nodes

Barrier, 1 ms Granularity, Modelled and Experimental Data

experiment
model
without 0
without 1
without 31
without 0, 1 and 31
without background noise

Figure 4.1. Simulated vs. experimental data with progressive exclusion of various sources of
noise in the system.

The table below shows the actual overhead incurred by the different cases for two computation
granularities of 1ms and 5ms. The reduction in percent indicates the effective performance
improvement that would be possible if the events on the indicated nodes were removed. It can be
seen that the reduction in time if the events where removed from only a single type node within
each partition would be between 10.5 and 17.1%, whereas removing all the background events
would cause a reduction in time of between 77.6% and 88.9%.

QB Testing/CCS-3 20 01/02/03

QB Testing/CCS-3 20 01/02/03

Events Modeled 1ms Computation 5ms Computation
 Latency

(ms)
Overhead

(ms)
Reduction

(%)
Latency

(ms)
Overhead

(ms)
Reduction

(%)
All 6.84 5.84 - 18.76 13.76 -
Without Node 0 6.05 5.05 13.5 16.82 11.82 14.2
Without Node 1 5.93 4.93 15.6 16.40 11.40 17.1
Without Node 31 6.12 5.12 12.4 17.32 12.32 10.5
Without Nodes 0, 1 & 31 4.63 3.63 37.8 13.18 8.18 40.5
Without all background events 1.65 0.65 88.9 8.09 3.09 77.6

Table 4.1 – Performance summary of allreduce on 1024 nodes.

QB Testing/CCS-3 21 01/02/03

QB Testing/CCS-3 21 01/02/03

5. Possible Application Performance

From the insight into the performance of the events in Section 4, we have used this is indicate
what could be the improvement on SAGE. By assuming that the increased cycle time measured in
over that of the model expectation (as shown in Figure 1.1) we are able to provide an estimate of
what the performance of SAGE may be if the events identified and characterized in Sction 4
could be removed.

Figure 5.1. shows the performance of SAGE, using the timing.input deck. The upper curve is the
current measured performance and the lower curve is the ideal expected performance from the
CCS-3 performance model. It can be seen that the curves inbetween correspond to removing the
events from Node 0, Node 1, Node 31, Node 0 & 1 &31, and all background events. The
improvements in performance correspond to the improvement in performance simulated as
detailed in Section 4 and listed in Table 4.1. It should be noted that Figure 5.1 shows the
maximum possible performance improvement that could be obtained.

Performance Improvements Possible SAGE - QB (timing.input)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1024 2048 3072 4096
#PEs

A
ve

ra
g

e
C

yc
le

 t
im

e
(s

)

Model
Measured (11/25/2002)
Without Events on Node 0
Without Events on Node 1
Without Events on Node 31
Without Events on Node 0,1&31
Without all background events

Figure 5.1 – Possible SAGE performance improvement.

A summary of the performance improvements are shown in Table 5.1. for the case of using 1024
nodes (4096 PEs). The performance is shown as a % increase over that of the ideal case provided
by the CCS-3 model. The current measurements are 76% greater (run-time is 76% longer) than
the ideal case. If all the background events could be removed than the performance would only be
11% greater than the ideal.

QB Testing/CCS-3 22 01/02/03

QB Testing/CCS-3 22 01/02/03

 Average Cycle
time (s)

% Greater than
Ideal Model

Current Measurement 1.24 76%
Without Node 0 1.16 65%
Without Node 1 1.15 64%
Without Node 31 1.17 67%
Without Nodes 0, 1 & 31 1.02 46%
Without all background events 0.78 11%
Model (Ideal) 0.68 -

Table 5.1 – Summary of SAGE performance if background events could be removed (1024
nodes)

A summary of the performance changes that will result from removing all the background noise,
configuring out nodes and using only three processors per node is shown in Table 5.2. Also
shown in Table 5.2 is the effect of using only 3PEs/node (which results from measurements). A
positive % figure indicates an increase in performance, whereas a negative figure indicates a
decrease. All these figures are based on using the timing.input deck on SAGE.
It can clearly be seen that the best situation is to use 3PEs/node when using 512nodes or above.
The effect of configuring out node 0, or node 1, or node 31, or all three together, results in only a
marginal change in performance.

Configuration 256Nodes 512Nodes 768Nodes 1024Nodes
3PEs/node -1% +23% +39% +47%
Without Node 0 -2% 0% +3% +3%
Without Node 1 -2% 0% +3% +5%
Without Node 31 -2% 0% +1% +2%
Without Nodes 0,1,&31 -6% +5% +10% +15%
4PEs/node (without all
background events)

+13% +35% +49% +60%

Table 5.2 – Summary of SAGE performance on configuring out nodes per partition, or using
3PEs/node.

QB Testing/CCS-3 23 01/02/03

QB Testing/CCS-3 23 01/02/03

6. Conclusions and Recommendations

We have analyzed the performance of ASCI QB and its variability. We have identified the root
causes of the performance degradation and variability: system activity on the nodes, and not
network traffic delays. The analysis is qualitative and quantitative, the first of this kind that we
are aware of anywhere. The sources of performance degradation and variability are identified,
quantified and plugged back into the performance model for SAGE. We show that these
performance degradation sources account for more than 90% of the difference between the
measured data and the modeled (expected) data for the performance of SAGE.
In this way, having gained the confidence that the analysis is comprehensive (i.e., we took into
account all sources of performance degradation and variability) we use an accurate discrete event
simulator developed for this work to assess the effect of various sources of delays considered on
the overall performance of the code. We found out that in fact, counter intuitively, most of the
degradation is due to the compound effect of the small delays in the compute nodes, and not to
the big delays induced by the I/O cluster nodes.

At a strictly practical level the table below summarize the sources of performance degradation
and instability and suggests means to improve or outright fix the problems.

Node Problem Possible Action
0 Cluster Management &

I/O
1) Configure out Node 0 when system is used for multiple jobs
(Capacity mode)
2) No action when system used for a single job that performs bulk-
synchronous I/O

1 Cluster Management
(quorum node)

Same actions as for Node 0

31 RMS data collection 1) Reduce frequency of collection
Other O/S (tru64) 1) Reduce the length of the O/S scheduling quantum (for example

from 10ms down to 1ms).
2) Reduce the activity of kernel threads and other demons
3) Co-scheduling of system activities – by synchronizing system
activities across all nodes, the effect of system intrusions can be
minimized.

 RMS data monitoring 1) Reduce frequency of monitoring
2) Reduce number of different events monitored – especially those
with high latency (e.g. those that access CFS).

Nearly all of these suggested actions have been implemented and tested on one of the CCS-3
Linux cluster test-beds. It has been demonstrated that almost all of the overheads on the
compute nodes can be removed and hence resulting in near optimal application
performance.

One further suggestion is to provide a dual-boot facility on QB enabling either Linux or Tru64 to
be used as the O/S. This may not be entirely straightforward but the potential performance benefit
makes this a worthwhile enterprise and a path that should be fully explored.

This work is a qualitative and quantitative example of the effect of the “weakest link in the chain”
effect (described by the Amdahl’s Law) on extreme-scale parallel machines. Small,
unsynchronized system activity of many kinds gets compounded leading to effects sometime
orders of magnitude bigger on large scale system.

Undoubtedly, all possible sources of system activity that could be reduced should be reduced. But

QB Testing/CCS-3 24 01/02/03

QB Testing/CCS-3 24 01/02/03

most importantly, on future generation system software for large scale architectures, system
activity on the nodes should be synchronized, for example by a heartbeat in the network. In
this way, the effect of the small delays is overlapped and not additive.

Acknowlegements

We acknowledge the help from Joe Kleczka, Amos Lovato, Malcom Lundin, David Addison ,
and the active involvement of Manuel Vigil and Ray Miller. Thanks to the Quadrics folks in
Bristol for their prompt help.

QB Testing/CCS-3 25 01/02/03

QB Testing/CCS-3 25 01/02/03

7. Appendix: Methodology for Quadrics network debugging

Fabrizio Petrini, David Addison

We strongly advise that a procedure should be put in place to monitor the embedded
controllers regularly or else the network error database will be an incomplete record of
the network status.
Also, the network error database should also be queried regularly, perhaps several times
a day to be more proactive on network issues.

Methodology for Quadrics network debugging

In order to expose the problems, we found these two aggressive tests useful.

1) complement traffic

prun -N 1024 -p full -Rrailmask=[1-2] tping -p 1023 -fdping 0 4m

this test uses pairs of nodes to flood the network with messages and keeps all the links
active in both directions at the same time. Network problems can usually be suspected
when some of the pairs report much lower bandwidths (e.g 30-50MB/s instead of
200MB/s)

The command line works on 1024 nodes, but it is possible to use the same test on a
smaller number of nodes, as long this number is a power of two. In the general case, just
replace 1024 with NODES

-N NODES -p NODES-1 with NODES power of 2

2) global exchange traffic

prun -N 1024 -p full -Rrailmask=[1-2] tping -fgex -n100 64k

This test also floods the network and stresses the Elans. It is possible to run the global
exchange on any number of nodes.

The complement traffic deterministically exposed a set of problems on the second rail,
while the global exchange exposes another set of problems on the first rail.

The errors that are logged by the RMS database can be viewed by running

QB Testing/CCS-3 26 01/02/03

QB Testing/CCS-3 26 01/02/03

/usr/opt/rms/diag/neterror -H hours

where number is the number of hours.

3) In order to troubleshoot the cable/switch failures, it is possible to use the following
script

/users/fabrizio/CABLETEST/QB-CABLETEST

We wrote this script today for the purpose of debugging the network, and handed it over
to Malcom Landon of Raytheon and Joe Klescka. We recommend using this script
periodically for debugging purposes.

The script runs cable tests every 64 nodes, covering both rails the whole QB. It can also
be adapted to run the same tests on QA, by simply changing

 QB=qb`expr $NODE + 1024` with

 QA=qa`expr $NODE`

and replacing all the occurrences of qb with qa.

Surprisingly, all the "standard" benchmarks completed successfully, without displaying
any substantial functional or performance problems in the network.

