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Summary 
 
 
This report is split into several sections:  
 
1 – examines the performance of SAGE on QB 
2 – examines the factors that contribute to the achievable application performance on each node 
3 – details the performance factors across the system 
4 – Gives results from a detailed model of the performance factors 
5 – Gives an indication of possible application performance that may be achievable if the 
identified performance factors are removed 
6 – Recommendation to improve the performance, decrease its variability and overall improving 
the system software 
7 – An appendix presenting a Quadrics network debugging scenario which we have utilized 
consistently on QB in order to reveal potential hardware problems. We strongly recommend that 
the system people include this procedure in their standard running scripts and run it periodically. 
First time we utilized it we found many Quadrics switches that were not reporting errors to the 
RMS database and were not operating optimally for a variety of reasons. We guess that this 
situation may exist on QA too, as we never had a chance of debugging the network on that 
machine. 
 
The analysis is quite complex in this work. It flows as follows: 
 
First we measure the performance of SAGE and note 1. its departure from the accurate modeled 
performance (i.e., the expected performance), and 2. its variability, seemingly random. We also 
compare the performance of SAGE when using 1,2,3 and 4 processors per node against the 
model. The performance degradation and its variability are present when using 4 processors per 
node only. This is presented in section 1. 
 
With that in mind, we proceed to identifying the factors that contribute to the performance 
degradation observed, in section 2. For instance, profiling SAGE in terms of the communication 
kernels it utilizes, we note that apparently allreduce is responsible for the performance 
degradation and variability, while all the other communication kernels exhibit expected 
performance. Furthermore, since allreduce is composed of a reduce and a broadcast, we 
analyze the performance of each of these 2 kernels to observe that in fact the performance of 
reduce is suboptimal and variable. 
Next logical step was to attempt to improve the performance of reduce, both algorithmically and 
by optimizing the runtime environment, as detailed in section 2.1. The overall improvement of 
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reduce, a whopping factor of 7 though didn’t seem to lead to overall improvements in the 
performance of SAGE. 
 
 
We then proceeded with a groundbreaking analysis of the computational nodes, the first of it kind 
that we are aware of for large-scale parallelism, beginning in section 2.2. 
We designed and implemented a set of benchmarks to reveal and quantify the level of noise in the 
nodes. We quantify all the perturbations in the system in terms of frequency and duration, assign 
them to system processes (kernel or daemons), and link these perturbations to “types” of nodes 
with selected functionality in the system. Many interesting observations are made here: all nodes 
are affected by one or more types of periodic events, the frequency and duration of these events is 
widely different, the I/O clusters and rms impose a coarse-grain periodicity, etc. Knowing all 
these events that contribute to performance degradation and variability allowed us to write an 
accurate discrete-event simulator for analyzing these issues. Of course, since the proper 
functioning of the system requires these processes to run on it, further analysis would not be 
possible without the simulator as experiments are not possible. 
 
With the simulator we analyze the “what if” scenarios, when one or more sources of noise are 
eliminated, in section 4. There are many counterintuitive observations here, for example that the 
positive impact from removing the seemingly bigger sources of noise is small. In this section we 
reveal the “real” source of variability: the compounded effect of the system events leading to 
serious synchronization problems at large scale. Hence, in fact, the degradation in the 
performance of reduce is due to synchronization delays and not to communication delays! 
 
In section 5 we relate back this quantified noise into the SAGE model showing that it accounts 
for all the performance variability described in section 1. 
 
In the last section we make some recommendation for improving the situation, although it is now 
crystal clear that a 100% solution is not achievable, since not all system activity can be removed. 
 
We have identified the root causes of the performance degradation and variability: system 
activity on the nodes (kernel and daemons), and not network traffic delays. 
 
We claim that with this report we completely and conclusively clarified the problems of Q 
variability that have been widely noticed on the system but not comprehensively analyzed 
before this work. 
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1. SAGE Performance 
 
SAGE, version 20001220 was executed on the 1024 node QB system. The scaling behavior of 
SAGE running test case “timing.input” was recorded for a number of test cases.  
 

- Scaling up to 4096 PEs using 1 Rail (Figure 1.1) 
- Scaling up to 4096 PEs using 2 Rails (Figure 1.2) 
- Scaling when using either 1 PE, 2 PEs, 3PEs, or 4PEs per node (Figure 1.3, 1.4, and 1.5) 
- Performance breakdown of communication components (Figure 1.6) 
- 1000 cycle run to examine variability on 3584 PEs (Figure 1.7, and Figure 1.8) 

 
In all cases the performance of SAGE was recorded using the cycle time metric – the time taken 
to execute a single cycle of timing.input. 
 
From these sets of measurements the components that add to the variability of the performance of 
SAGE at higher PE counts were identified. As will be seen there is an unexpected increase in the 
time spent in the allreduce collective communications with scaling (especially at and above 1024 
PEs).  
 
1.1 Scaling using 1 Rail 
 
The performance of SAGE using 1-rail of QB is shown in Figure 1.1. It can be seen that the 
performance is almost identical to that earlier in September. It should also be noted that the 
performance of SAGE is significantly above that expected as given by the CCS-3 performance 
model. At 1024 PEs the performance is 14% worse than expected rising to 70% worse at 4096 
PEs. 
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Figure 1.1 – SAGE scaling using 1 Rail (timing.input) 
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1.2 Scaling using 2 Rails  
 
The performance of SAGE was also measured when using 2-Rails and is compared to the 
performance on 1 RAIL in Figure 1.2. It can be seen that the 2-Rail performance is slightly better 
than using 1-Rail at 64 PEs and above. This actually corresponds to an improvement expected 
from the performance model. However, above 1024PEs, the performance is still significantly 
worse than expected – the same situation as when using 1-rail. 
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Figure 1.2 – Comparison of the SAGE scaling using 1 and 2 Rails (timing.input) 

 
1.3 Scaling using 1, 2, 3, and 4 PEs per node 
 
In order to investigate the performance of SAGE further, we measured the performance when 
using a different number of PEs per node. In this analysis, we varied the number of PEs per node: 
1, 2, 3, or 4. The measured performance is shown in Figure 1.3. 
 
It can be seen that the performance of SAGE gets worse as more PEs per node are used. When 
using 1, 2, or 3 PEs per node the scaling behavior is reasonable. However, when using all 4 PEs 
per node the performance is significantly worse.  
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Sage on QB (timing.input)
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Figure 1.3 – SAGE scaling using 1PE, 2PEs, 3PEs, or 4PEs per node 

 
The difference between the measured performance for using 1PE, 2PEs, 3PEs, and 4PEs per node 
is compared to that expected from the performance model in Figure 1.4. Note that only the 
difference between the measured performance and that expected by the model is shown in Figure 
1.4. It can be seen that the measured data is very close to that expected when using 1PE, 2PEs, 
and 3PEs per node. However there is a large deviation when using 4PEs per node indicating a 
performance problem. 
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Figure 1.4 – Difference between measurement and model for 1PE, 2PEs, 3PEs, and 4PEs per 

node. 
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It is also interesting to note the effective performance that can be achieved when using less than 
the maximum number of PEs per node on SAGE. This is illustrated in Figure 1.5. When using 
more than approximately 1024 PEs a higher performance can be achieved using 3PEs/node than 
4PEs/node. The exact cross-over point is dependant upon the exact configuration of the problem 
being processed by SAGE. 
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Figure 1.5 – Relative performance on SAGE when using 3PEs/node and 4PE/node 

 
1.4 Time breakdown  (1-rail scaling) 
 
In order to understand why the performance of SAGE is not as expected, the time spent in the 
different communication aspects of SAGE were recorded in a scaling study using one rail. The 
communication components are separated into token_get and token_put (for the data gathers 
and scatters between spatially neighboring processors), and token_allreduce, token_bcast, 
and token_reduction (collective operations). The time taken in each of these components is 
shown in Figure 1.6. 
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SAGE on QB - Breakdown (timing.input)
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Figure 1.6 – Component times in SAGE scaling (timing.input) 

 
The scaling of the gather-scatter operations (token_put and token_get) are as expected. 
However the scaling of the collective operations, in particular the token_allreduce, are much 
worse than expected when using more than 256 PEs. This can be clearly seen when considering 
the cycle_time in comparison to the model expectations in Figure 1.1. The difference between 
the model and the measurements can be attributed to the token_allreduce time in Figure 
1.6. 
 
1.5 Performance Variability of SAGE 
 
In a further performance study, SAGE was executed for 1000 cycles using timing.input on 
3584 PEs. The time taken for each cycle was recorded along with the time components as used in 
Figure 1.6. Figure 1.7 shows the cycle time for all cycles along with the performance model 
estimate. The distribution of the cycle time is shown in a histogram in Figure 1.8. 
 
The cycle time for SAGE when using timing.input should be constant as all cycles effectively 
perform the same processing. However, as can be seen in Figure 1.7 there is considerable 
variability in the performance from cycle to cycle which can be attributed to the allreduce 
operations. 
 
The histogram shown in Figure 1.8 indicates that the best cycle time observed over all the cycles 
is ~0.75s, which is very close to the performance model prediction of 0.68s. This indicates that in 
a very small percentage of cycles the performance obtained is as expected, but in the majority of 
cycles the performance is worse, sometimes by more than a factor of 3! 
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SAGE QB 3584 PEs (timing.input)
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Figure 1.7 – Cycle time for 1000 cycles of SAGE (timing.input) 
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Figure 1.8 – Histogram of the cycle times for 1000 cycles of SAGE (timing.input) 

 
1.6 Summary of SAGE performance  
 
The performance of SAGE is less than expected. The cycle time is above expectation at 1024 PEs 
and above (Figure 1.1) when using 4 PEs per node. The performance is 14% worse than expected 
at 1024 PEs and 70% worse than expected at 4096PEs. 
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When using a lower number of PEs per node the performance is as expected (Figure 1.4). There 
is no performance degradation on larger PE counts. 
 
The degradation is not constant across cycles but varies significantly (Figure 1.7). This seems to 
correspond to performance variability reported elsewhere. 
 
The degradation in performance and the performance variability most likely result from the 
collective operations (specifically allreduce). 
 
In the following sections, the performance degradation will be analyzed in a comprehensive 
manner, quantified and solutions for improvements presented. 
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2. Identification of Performance Factors 
 
In order to identify why application performance such as that observed on SAGE is not as good 
as expected, we undertook a number of performance studies. To simplify this process we 
concerned ourselves with the examination of smaller, individual operations. Since it appeared that 
SAGE was adversely affected by the performance of the allreduce collective operation several 
attempts were made to improve the performance of collectives on the Quadrics network.  
 
2.1 Optimizing the Allreduce 
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Figure 2.1 allreduce latency, varying the number of nodes and processes per node 

 
Figure 2.1 shows the performance of the allreduce when executed on an increasing number of 
nodes. The graph clearly shows that the problem arises when we use all four processors per node. 
With up to three processes the allreduce is fully scalable and takes, on average, less than 
300µs. With four processors the latency surges to more than 3ms on the full QB machine. 
 
We made several attempts to optimize the allreduce in the four-processes case, and we were 
able to substantially reduce the worst case. In order to do that we used a different synchronization 
mechanism. In the existing implementation the processes in the reduce tree poll while waiting for 
incoming messages.  By changing the synchronization mechanism to poll for a limited time 
(100µs) and then block, we were able to improve the latency by a factor of 7. 
 
Extensive testing was made on the modified collectives but resulted in only a marginal 
improvement in performance.  So we were not able to link the performance variability 
problems to glitches in either the MPI implementation or the network.  Having thus ruled out 
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MPI and the network as sources of performance loss we now proceed to scrutinize the nodes 
themselves. 
 
 
2.2 Analyzing the Computational Noise 
 
 
A further test was designed to examine the computational performance of each processor within a 
node. The goal of this test was to narrow down the search space and to come up with a simple 
benchmark to expose the variability problems. The benchmark works as follows. Each node 
performs a sequence of synthetic computations, each one carefully calibrated at the granularity of 
1ms, for a total run time of 1000 seconds. Using a small granularity is important because both 
SAGE and Sweep3D may display such granularity. During this purely computational phase, there 
is no message exchange or I/O and the benchmark is run on all 4096 processors of QB. As shown 
in Figure 2.2 we take two types of measurements.  In the coarse-grained experiment (Figure 
2.2(a)) we measure the entire run time of each process, which in the ideal case should be 1000 
seconds.  In the fine-grained experiment (Figure 2.2(b)) we measure the run time of each single 
chunk of computation, which should always be 1ms in a noiseless machine.  N.B.: On 2DEC2002 
this test initially identified a node containing processors running at 1GHz, i.e., a node that did not 
successfully get upgraded to 1.25GHz! 
. 
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Figure 2.2 Measurement of the time taken to perform a computation task on each processor. 
 

The total normalized run time for the coarse grained measurement is shown in Figure 2.3 for all 
of the processors in the system. Due to interference from non-application activities within each 
node, the processing time can be longer and can vary from process to process.  The aggregate 
overhead experienced by each process is low, with a maximum delay of  2.5% (which amount to 
a slowdown  of 25 seconds over a total runtime of 1000 seconds). 
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Figure 2.3 – Average time to process a 1ms computation task on each processor on QB 

 
A particular aspect of these results is that they are analyzed on a per-process basis. This does not 
show the true nature of the performance effects that are occurring. By analyzing the data on a per 
node basis we can gather more insight into the performance variability problem.  Figure 2.4 
shows the results of the fine grained experiment. In this experiment we run 1 million iterations, 
each with a granularity of 1ms. As in the previous experiment, we do not perform any 
communication or I/O. At the end of each iteration we measure the actual run time, and for each 
iteration that takes more than twice the expected run time, we sum the unexpected overhead, 
expressed as the actual run time minus the threshold, for each node. Looking at the graph we can 
see that the noise has a regular pattern. Every partition of 32 nodes contains some nodes that are 
consistently noisier than others. 
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Figure 2.4 – Variation in computation time on a per-node basis. 

 
Figure 2.5 expands the previous graph in order to pursue more detail on one of the clusters. We 
can see that all nodes suffer from a moderate background noise and that node 0 (the cluster 
manager), node 1 (the quorum node), and node 31 are slower than the others.   This pattern 
repeats every 32 nodes.  Therefore, in the rest of this section, “0” means “0+32k”, “1” means 
“1+32k”, and “31” means “31+32k”, where k is a nonnegative integer. 
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Figure 2.5– Examination of the overhead per node within each 32-node partition. 

 
In order to understand the nature of this noise, we plot the latency distribution for four classes of 
nodes: the standard cluster node, node 0, 1 and 31.  In Figure 2.6 we can see that the noise on 
each node has a well defined pattern, with classes of events that happen regularly with well 
defined frequencies and durations. 
 
For example, on any cluster node we can identify two events that happen regularly every 24 and 
42 seconds, and whose duration is, respectively, 16 and 19ms. This means that a slice of 
computation that should take 1ms occasionally takes 16 or 19ms. The process that experience this 
type of interruption will freeze for the corresponding amount of time. Intuitively, these events can 
be traced back to some regular system activity as daemons or the kernel itself. 
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Figure 2.6 – Identification of the events that cause delay on the different types of nodes. 

 
Node 0 displays  four different types of activities, all happening at regular intervals, with a 
duration that can be up to 200 ms. Node 1 experiences a few heavyweight interrupts, every 60 
seconds, that freeze the process for about 335 ms (two orders of magnitude larger than the cycle 
time of many ASCI codes). 
 
On node 31 we can identify another pattern of  intrusion, with frequent interrupts (every second) 
and a duration of 7ms.  Table 2.1 summarizes the characteristics of the main components of the 
noise in the system. 
 
 

Node ID 
(within a 32-node 
partition) 

Event Period 
(seconds) 

Event Duration 
(milli-seconds) 

All   24   16 
All   42   1.9 
0   30   10 
0 125 100 
0 125 177 
0   70 200 
1   60 335 
31     1     7 

 
Table 2.1 – Summary of Identified Events – periods and durations across nodes within each 
partition. 
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3. Effect on System Performance 
 
Figure 3.1 provides some intuition on the potential effects of these delays on applications that are 
fine-grained and bulk-synchronous. In such a case, a delay in a single process slows down the 
whole job.  Notice that even though any given process in Figure 3.1 is delayed only once, the 
collective-communication operation (represented by the black lines) is delayed in every iteration. 
When we run a job on a large number of processors, the likelihood of having at least one slow 
process per iteration increases. For example, if only one process out of 4096 experiences a delay 
of 100 ms, on a job that barrier synchronizes every 1ms, then the whole application will run 100 
times slower. 
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TIME

 
Figure 3.1: Example of how a slow process delays the entire application 

 
Figure 3.2 shows the performance of  the allreduce and the barrier in a synthetic parallel 
benchmark that computes for either 0, 1, or 5ms and performs an allreduce or a barrier at the 
end of each compute step. In an ideal, scalable, system we should not see any difference in the 
run time of the collective communication. What we see is that the completion time 
increases linearly with the number of nodes and with the computational granularity. This is 
due to skew caused by noise within the node, not by any problems in either the network or 
the communication library.  Larger grain sizes induce longer latencies because they increase the 
likelihood that background load will strike during at least one process’s compute time. 
The graph below also shows that both allreduce and barrier exhibit similar performance. 
Given that the barrier is executed using the hardware broadcast, whose execution is almost 
instantaneous (a few µs), the only reason for this performance degradation is the skew 
accumulated within the processing nodes. 
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Figure 3.2: allreduce and barrier latency with varying amounts of intervening computation 
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4. Modeling System Events 
 
From the events we identified in Section 2, we have developed a discrete-event simulator that 
takes into account all the classes of events identified in the previous section and provides a 
realistic lower bound on the execution time.  We validated the simulator for the measured events, 
and we can see from Figure 4.1 below that the model is close to the experimental data. The gap 
between the model and the data at high node counts can be explained by the presence of a few 
especially noisy—probably misconfigured—partitions in the second half of the cluster. 
 
Using the simulator we can predict the performance gain that can be obtained by selectively 
removing  the sources of the noise. For example, if we remove the noise generated by either node 
0, 1 or 31, we only get a marginal improvement, approximately 15%. If we remove all three 
“special” nodes, 0, 1 and 31,  we get an improvement of 35%. However, the noise in the system 
dramatically reduces when we eliminate the background noise on the compute nodes.  Although 
Table 2.1 showed that the background jobs running on all nodes tends to have an order of 
magnitude shorter duration than those running on only the cluster-manager or quorum nodes, the 
short period and sheer number of nodes running those background jobs cover the first-order effect 
of the observed performance loss. 
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Figure 4.1. Simulated vs. experimental data with progressive exclusion of various sources of 
noise in the system. 
 
The table below shows the actual overhead incurred by the different cases for two computation 
granularities of 1ms and 5ms. The reduction in percent indicates the effective performance 
improvement that would be possible if the events on the indicated nodes were removed. It can be 
seen that the reduction in time if the events where removed from only a single type node within 
each partition would be between 10.5 and 17.1%, whereas removing all the background events 
would cause a reduction in time of between 77.6% and 88.9%.  
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Events Modeled  1ms Computation  5ms Computation  
 Latency 

(ms) 
Overhead 

(ms) 
Reduction 

(%) 
Latency 

(ms) 
Overhead 

(ms) 
Reduction 

(%) 
All 6.84 5.84 - 18.76 13.76 - 
Without Node 0 6.05 5.05 13.5 16.82 11.82 14.2 
Without Node 1 5.93 4.93 15.6 16.40 11.40 17.1 
Without Node 31 6.12 5.12 12.4 17.32 12.32 10.5 
Without Nodes 0, 1 & 31 4.63 3.63 37.8 13.18 8.18 40.5 
Without all background events 1.65 0.65 88.9 8.09 3.09 77.6 

 
Table 4.1 – Performance summary of allreduce on 1024 nodes. 
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5. Possible Application Performance 
 
From the insight into the performance of the events in Section 4, we have used this is indicate 
what could be the improvement on SAGE. By assuming that the increased cycle time measured in 
over that of the model expectation (as shown in Figure 1.1) we are able to provide an estimate of 
what the performance of SAGE  may be if the events identified and characterized in Sction 4 
could be removed.  
 
Figure 5.1. shows the performance of SAGE, using the timing.input deck. The upper curve is the 
current measured performance and the lower curve is the ideal expected performance from the 
CCS-3 performance model. It can be seen that the curves inbetween correspond to removing the 
events from Node 0, Node 1, Node 31, Node 0 & 1 &31, and all background events. The 
improvements in performance correspond to the improvement in performance simulated as 
detailed in Section 4 and listed in Table 4.1. It should be noted that Figure 5.1 shows the 
maximum possible performance improvement that could be obtained. 
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Figure 5.1 – Possible SAGE performance improvement. 

 
 
A summary of the performance improvements are shown in Table 5.1. for the case of using 1024 
nodes (4096 PEs). The performance is shown as a % increase over that of the ideal case provided 
by the CCS-3 model. The current measurements are 76% greater (run-time is 76% longer) than 
the ideal case. If all the background events could be removed than the performance would only be 
11% greater than the ideal. 
 
 
 
 
 
 



QB Testing/CCS-3 22 01/02/03 

 

QB Testing/CCS-3 22 01/02/03 

 Average Cycle 
time (s) 

% Greater than 
Ideal Model 

Current Measurement 1.24 76% 
Without Node 0 1.16 65% 
Without Node 1 1.15 64% 
Without Node 31 1.17 67% 
Without Nodes 0, 1 & 31 1.02 46% 
Without all background events 0.78 11% 
Model (Ideal) 0.68 - 

 
Table 5.1 – Summary of SAGE performance if background events could be removed (1024 
nodes) 
 
A summary of the performance changes that will result from removing all the background noise, 
configuring out nodes and using only three processors per node is shown in Table 5.2. Also 
shown in Table 5.2 is the effect of using only 3PEs/node (which results from measurements). A 
positive % figure indicates an increase in performance, whereas a negative figure indicates a 
decrease. All these figures are based on using the timing.input deck on SAGE. 
It can clearly be seen that the best situation is to use 3PEs/node when using 512nodes or above. 
The effect of configuring out node 0, or node 1, or node 31, or all three together, results in only a 
marginal change in performance.  
 

Configuration 256Nodes 512Nodes 768Nodes 1024Nodes 
3PEs/node  -1% +23% +39% +47% 
Without Node 0 -2%     0%   +3%   +3% 
Without Node 1 -2%     0%   +3%   +5% 
Without Node 31 -2%     0%   +1%  +2% 
Without Nodes 0,1,&31 -6%  +5%  +10% +15% 
4PEs/node (without all 
background events) 

+13% +35% +49% +60% 

 
Table 5.2 – Summary of SAGE performance on configuring out nodes per partition, or using 
3PEs/node. 
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6. Conclusions and Recommendations 
 
We have analyzed the performance of ASCI QB and its variability. We have identified the root 
causes of the performance degradation and variability: system activity on the nodes, and not 
network traffic delays. The analysis is qualitative and quantitative, the first of this kind that we 
are aware of anywhere. The sources of performance degradation and variability are identified, 
quantified and plugged back into the performance model for SAGE. We show that these 
performance degradation sources account for more than 90% of the difference between the 
measured data and the modeled (expected) data for the performance of SAGE. 
In this way, having gained the confidence that the analysis is comprehensive (i.e., we took into 
account all sources of performance degradation and variability) we use an accurate discrete event 
simulator developed for this work to assess the effect of various sources of delays considered on 
the overall performance of the code. We found out that in fact, counter intuitively, most of the 
degradation is due to the compound effect of the small delays in the compute nodes, and not to 
the big delays induced by the I/O cluster nodes. 
 
At a strictly practical level the table below summarize the sources of performance degradation 
and instability and suggests means to improve or outright fix the problems. 
 
Node Problem Possible Action 
0 Cluster Management & 

I/O 
1) Configure out Node 0 when system is used for multiple jobs 
(Capacity mode) 
2) No action when system used for a single job that performs bulk-
synchronous I/O 

1 Cluster Management 
(quorum node) 

Same actions as for Node 0 

31 RMS data collection 1) Reduce frequency of collection 
Other O/S (tru64) 1) Reduce the length of the O/S scheduling quantum (for example 

from 10ms down to 1ms). 
2) Reduce the activity of kernel threads and other demons 
3) Co-scheduling of system activities – by synchronizing system 
activities across all nodes, the effect of system intrusions can be 
minimized.  

 RMS data monitoring 1) Reduce frequency of monitoring 
2) Reduce number of different events monitored – especially those 
with high latency (e.g. those that access  CFS). 

 
Nearly all of these suggested actions have been implemented and tested on one of the CCS-3 
Linux cluster test-beds. It has been demonstrated that almost all of the overheads on the 
compute nodes can be removed and hence resulting in near optimal application 
performance. 
 
One further suggestion is to provide a dual-boot facility on QB enabling either Linux or Tru64 to 
be used as the O/S. This may not be entirely straightforward but the potential performance benefit 
makes this a worthwhile enterprise and a path that should be fully explored.  
 
This work is a qualitative and quantitative example of the effect of the “weakest link in the chain” 
effect (described by the Amdahl’s Law) on extreme-scale parallel machines. Small, 
unsynchronized system activity of many kinds gets compounded leading to effects sometime 
orders of magnitude bigger on large scale system. 
 
Undoubtedly, all possible sources of system activity that could be reduced should be reduced. But 
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most importantly, on future generation system software for large scale architectures, system 
activity on the nodes should be synchronized, for example by a heartbeat in the network. In 
this way, the effect of the small delays is overlapped and not additive. 
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7. Appendix: Methodology for Quadrics network debugging 
 

Fabrizio Petrini, David Addison 
 

 
 
 
We strongly advise that a procedure should be put in place to monitor the embedded 
controllers regularly or else the network error database will be an incomplete record of 
the network status.   
Also, the network error database should also be queried regularly, perhaps several times 
a day to be more proactive on network issues. 
 
 
Methodology for Quadrics network debugging 
 
In order to expose the problems, we found these two aggressive tests useful. 
 
1) complement traffic 
 
prun -N 1024 -p full -Rrailmask=[1-2] tping -p 1023 -fdping 0 4m 
 
 
this test uses pairs of nodes to flood the network with messages and keeps all the links 
active in both directions at the same time. Network problems can usually be suspected 
when some of the pairs report much lower bandwidths (e.g 30-50MB/s instead of 
200MB/s) 
 
The command line works on 1024 nodes, but it is possible to use the same test on a 
smaller number of nodes, as long this number is a power of two. In the general case, just 
replace 1024 with NODES 
 
-N NODES .....   -p NODES-1 with NODES power of 2 
 
 
2) global exchange traffic 
 
prun -N 1024 -p full -Rrailmask=[1-2] tping -fgex -n100 64k 
 
This test also floods the network and stresses the Elans. It is possible to run the global 
exchange on any number of nodes. 
 
The complement traffic deterministically exposed a set of problems on the second rail, 
while the global exchange exposes another set of problems on the first rail. 
 
The errors that are logged by the RMS database can be viewed by running 



QB Testing/CCS-3 26 01/02/03 

 

QB Testing/CCS-3 26 01/02/03 

 
/usr/opt/rms/diag/neterror -H hours 
 
where number is the number of hours.  
 
 
3) In order to troubleshoot the cable/switch failures, it is possible to use the following 
script 
 
/users/fabrizio/CABLETEST/QB-CABLETEST 
 
We wrote this script today for the purpose of debugging the network, and handed it over 
to Malcom Landon of Raytheon and Joe Klescka. We recommend using this script 
periodically for debugging purposes.  
 
The script runs cable tests every 64 nodes, covering both rails the whole QB. It can also 
be adapted to run the same tests on QA, by simply changing  
 
  QB=qb`expr $NODE + 1024` with 
 
  QA=qa`expr $NODE` 
 
and replacing all the occurrences of qb with qa. 
 
Surprisingly, all the "standard" benchmarks completed successfully, without displaying 
any substantial functional or performance problems in the network. 
 
 
 


