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Abstract. We develop a model for the parallel perform-
ance of algorithms that consist of concurrent, two-
dimensional wavefronts implemented in a message pass-
ing environment.  The model combines the separate con-
tributions of computation and communication wavefronts.
We validate the model on three supercomputer systems,
with up to 500 processors, using data from an ASCI de-
terministic particle transport application, although the
model is general to any wavefront algorithm implemented
on a 2-D processor domain.  We also use the model to
make estimates of performance and scalability of wave-
front algorithms on 100-TFLOPS computer systems ex-
pected to be in existence within the next decade. Our
model shows that on a 1-billion-cell problem, single-node
computation speed (not inter-processor communication
performance, as is widely believed) is the bottleneck. Fi-
nally, we present preliminary considerations that reveal
the additional complexity associated with modeling
wavefront algorithms on reduced-connectivity network
topologies, such as clusters of SMPs.

1.  Introduction

Wavefront techniques are used to enable parallelism in
algorithms that have recurrences by breaking the compu-
tation into segments and pipelining the segments through
multiple processors [1].  First described as “hyperplane”
methods [2], wavefront methods now find application in
several important areas including particle physics [3],
parallel iterative solvers [4], and parallel solution of trian-
gular systems of linear equations [5-7].

Wavefront computations present interesting imple-
mentation and performance modeling challenges on dis-
tributed memory machines because they exhibit a subtle
balance between processor utilization and communication
cost.  Optimal task granularity is a function of machine
parameters such as raw computational speed, and inter-
processor communication latency and bandwidth.  Al-
though it is simple to model the computation-only portion
of a single wavefront, it is considerably more complicated
to model multiple, simultaneous wavefronts, due to po-
tential overlap of computation and communication and/or

overlap of different communication or computation op-
erations individually.  Moreover, specific message-passing
synchronization methods impose constraints that can fur-
ther limit the available parallelism in the algorithm.  A
realistic scalability analysis must take into consideration
these constraints.

Much of the previous parallel performance modeling
of software-pipelined applications has involved algorithms
with one-dimensional recurrences and/or one-dimensional
processor decompositions [5-7].  A key contribution of
this paper is the development of an analytic performance
model of wavefront algorithms that have recurrences in
multiple dimensions and that have been partitioned and
pipelined on multidimensional processor grids.

Our vehicle for these studies is a “compact applica-
tion” called SWEEP3D, a time-independent, Cartesian-
grid, single-group, “discrete ordinates” deterministic par-
ticle transport code taken from the DOE Accelerated
Strategic Computing Initiative (ASCI) workload.
SWEEP3D represents the core of a widely utilized
method of solving the Boltzmann transport equation. Es-
timates are that deterministic particle transport accounts
for 50-80% of the execution time of many realistic simu-
lations on current DOE systems.  This percentage may
expand on future 100-TFLOPS systems.  Thus, an equally
important contribution of this work is the use of our model
to explore SWEEP3D scalability and to predict perform-
ance of SWEEP3D on future-generation systems.

Efforts devoted to improving performance of discrete
ordinates particle transport codes date back many years
and have extended recently to massively parallel systems
[8-12].  Research has included models of performance as
a function of problem and machine size, as well as other
characteristics of both the simulation and the computer
system under study.  For example, Koch, Baker, and Al-
couffe [3] developed a parallel efficiency formula that
considered computation only, while Baker and Alcouffe
[9] developed a model specific to CRAY T3D put/get
communication.  These previous models had limiting as-
sumptions about the computation and/or target machines.

In this work, we model parallel discrete ordinates
transport and account for both computation and communi-
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cation.  We validate the model on several architectures
within the realistic limits of all parameters appearing in
the model.  Although our validation is carried out on sys-
tems employing full network connectivity between nodes,
we conclude by presenting preliminary considerations that
reveal the additional complexity associated with modeling
wavefront algorithms on reduced-connectivity network
topologies.

2. Description of Discrete Ordinates Transport

Although much more complete treatments of discrete
ordinates neutron transport have appeared elsewhere [12-
15], we include a brief explanation here to make clear the
origin of the wavefront process in SWEEP3D.   The basis
for neutron transport simulation is the time-independent,
multigroup, inhomogeneous Boltzmann transport equa-
tion, which is formulated as

∇⋅ΩΨ(r,E,Ω) + ∫∫σ(r,E)ψ(r,E,Ω) =
∫∫dE′d′(r,E′ → E,Ω⋅Ω′)Ψ(r,E′,Ω′)  +
(1/4π)∫∫dE′dΩ′χ(r,E′ → E)νσ (r,E′)Ψ(r,E′,Ω′)  +
Q(r,E,Ω).

The unknown quantity is Ψ,  the flux of particles at the
spatial point r, with energy E, traveling in direction Ω.
Numerical solution involves discretization of the multi-
dimensional phase space defined by r, Ω, and E.  In the
discrete ordinates approximation (also referred to as the
SN method), the angular-direction Ω is discretized into a
set a quadrature points. The discretization is completed by
differencing the spatial domain of the problem on to a grid
of cells.

The solution method involves an iterative procedure
called a “source iteration,” the most time-consuming por-
tion of which is a transport sweep through the entire grid-
angle space in the direction of particle travel [13].  In
Cartesian geometries, each octant of angles has a different
sweep direction through the mesh, and all angles in a
given octant sweep the same way.

For a given discrete angle, boundary conditions and
the spatial differencing allow the sweep to be initiated at
the object’s exterior.  Thereafter, for any given cell, the
fluxes on the three incoming cell planes for particles trav-
eling in a given discrete angle are known and are used to
solve for the cell center and the three outgoing cell faces.
Thus, each interior cell requires in advance the solution of
its three upstream neighboring cells – a three-dimensional
recursion.

Figure 1 shows that on a 2-D grid, cells within a di-
agonal are independent of each other.  Diagonal
concurrency can also be the basis for an implementation
using a decomposition of the mesh into subdomains and
message passing to communicate the boundaries between
processors, as described in [12] and shown in Figure 2.

The transport sweep is performed subdomain by subdo-
main in a given angular direction.  Each processor’s exte-
rior surfaces are computed by, and received in a message
from, “upstream” processors owning the subdomains
sharing these surfaces. Parallelization in SWEEP3D uses
a 2-D processor decomposition of the spatial domain be-
cause recursion in one spatial direction cannot be elimi-
nated.

Figure 1. Diagonal Wavefront Transport Sweep

Figure 2. 2-D Domain decomposition on eight
processors with 2 k-planes per block.  The
transport sweep has started at top of the proces-
sor in the foreground.  Concurrently-computed
cells are shaded.

With this domain decomposition method, parallel effi-
ciency is limited if each processor computes its entire oc-
tant-angle-ijk local domain before communicating with its
neighbors.  To improve efficiency we compute only a
smaller "block" of angles and k-planes before communi-
cating.  Subsequent discussions refer often to these k- and
angle-block sizes, since varying these block sizes changes
the balance between parallel utilization and communica-
tion time.  Figure 2 shows an example with k-block size of
two planes per block.
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3.  A Performance Model for Parallel Wavefronts

We use a pipelined wavefront as the basic abstraction
and predict the execution time of the transport sweep as a
function of primary computation and communication pa-
rameters. We use a two-parameter (latency/bandwidth)
linear model for communication performance, using mul-
tiple parameters where appropriate, to capture the effects
of multiple MPI buffering strategies.  Computation time is
parameterized by problem size, number of floating-point
calculations per grid point, and a characteristic, single-
CPU floating-point speed.

3.1 Pipelined Wavefront Abstraction

An abstraction of the SWEEP3D algorithm partitioned
for message passing on a 2-D processor domain (ij plane)
is described in Figure 3.  The inner-loop body of this algo-
rithm describes a wavefront calculation with recurrences
in two dimensions.  Each processor must wait for bound-
ary information from neighboring processors to the north
and west before computing on its subdomain.  For con-
venience, we assume that the implementation uses MPI
with synchronous, blocking sends/receives.  There is little
loss of generality in this assumption since the subdomain
computation must wait for message receipt.  Multiple
waves initiated by the octant, angle-block and k- block
loops are pipelined one after another as shown in Figure 4,
in which two inner loop bodies (or “sweeps”) are execut-
ing on a Px by Py processor grid.  Each diagonal line of
processors is executing the same k-block loop iteration in
parallel on a different subdomain; two such diagonals are
highlighted in the figure.

The number of steps required to execute a computa-
tion of Nsweep wavefronts, each with a pipeline length of Ns

stages and a repetition delay of d is given by equation (1).

Steps = Ns + d(Nsweep – 1), (1)

The first wavefront exits the pipeline after Ns stages and
subsequent waves exit at the rate of 1/d.

The pipeline consists of both computation and com-
munication stages.  The number of stages of each kind and
the repetition delay per wavefront need to be determined
as a function of the number of processors and shape of the
processor grid.  The cost of each individual computa-
tion/communication stage is dependent on problem size,
processor speed and communication parameters.

3.2 Computation Stages

Figure 4 shows that the number of computation stages is
simply the number of diagonals in the grid.  A different
number of processors is employed at each stage but all
stages take the same amount of time since processors on a
diagonal execute concurrently.  The cost of one computa-
tional stage is thus the time to complete one
COMPUTE_MESH function (see Figure 3) on a processor’s
subdomain.  The discussion can be summarized with
Equation (2), which gives the number of steps in the com-
putation pipeline, and Equation 3, which gives the cost of
each step.
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Here Nx, Ny, and Nz are the number of grid points in each
direction; Kb is the size of the k-plane block; Ab is the size
of the angular block; Nflops is the number of floating-point
operations per gridpoint; and Rflops is a characteristic
floating-point processing rate.  The next sweep can begin
as soon as the first processor completes its computation so
the repetition delay, dcomp, is 1 computational step (i.e., the
time for completing one diagonal in the sweep).

Figure 4.  Multidimensional Pipelined Wavefronts
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FOR EACH OCTANT DO
FOR EACH ANGLE-BLOCK IN OCTANT DO

FOR EACH K-BLOCK DO
IF (NEIGHBOR_ON_EAST) RECEIVE FROM EAST (BOUNDARY DATA)
IF (NEIGHBOR_ON _NORTH) RECEIVE FROM NORTH (BOUNDARY DATA)

COMPUTE_MESH (EVERY I,J DIAGONAL; EVERY K IN K-BLOCK; 
EVERY ANGLE IN ANGLE-BLOCK)

IF (NEIGHBOR_ON_WEST) SEND TO WEST(BOUNDARY DATA)
IF (NEIGHBOR_ON_SOUTH) SEND TO SOUTH(BOUNDARY DATA)

END FOR
END FOR

END FOR

Figure 3.   Pseudo Code for the wavefront Algorithm

3.3 Communication Stages

The number and cost of communication stages are de-
pendent on specific characteristics of the communication
system.  The effect of blocking synchronous communica-
tions is that messages initiated by the same processor oc-
cur sequentially in time and messages must be received in
the same order that they are sent.  As implemented, the
order of receives is first from the west, then from the
north, and the order of sends is first to the east and then to
the south.  These rules lead to the ordering (and
concurrency) of the communications for a 4 x 4 processor
grid as shown in Figure 5 for a sweep that starts in the
upper-left quadrant.
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Figure 5.  Communication Pipeline.

In Figure 5 edges labeled with the same number are
executed simultaneously and the graph shows that it takes
12 steps to complete one communication sweep on a 4 x 4
processor grid.  We assume that a logical processor mesh
can be imbedded into the machine topology such that each
mesh node maps to a unique processor and each mesh
edge maps to a unique router link.  One can generalize the
number of stages to a grid of Px by Py processors by ob-
serving that communication for each row of processors is
initiated by a message from a north neighbor in the first
column of processors.  South-going messages in the first
column of processors occur on every other step since each
processor in the column a) has no west neighbor, and b)
must send east before sending south.  Thus the last proc-
essor in the first column receives a message on step 2(Py-
1).  This initiates a string of west-going messages along

the last row that are also sent on every other step, and the
number of stages in the communication pipeline is given
by

)1(2)1(2 −+−= xy
comm
s PPN (4)

Analogous to the computational pipeline, different
stages of the communication pipeline have different num-
bers of point-to-point communications.  However, since
these occur simultaneously, the cost of any single commu-
nication stage is the time of a one-way, nearest neighbor
communication.  This time is given by:

B
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where t0 and B are the message latency and bandwidth,
respectively.

The repetition delay for the communication pipeline,
dcomm

, is 4 because a message sent from the top-left proc-
essor (processor 0) to its east neighbor (processor 1) on
the second sweep cannot be initiated until processor 1
completes its communication with its south neighbor from
the first sweep (Figure 5).

3.4 Combining Computation and Communication Stages

In the previous two sections, we derived formulas that
are general for any pipelined wavefront computation.  We
can summarize the discussion in two equations that give
the separate contributions of computation and communi-
cation:

Tcomp  = [(Px + Py – 1) + (Nsweep – 1)] * Tcpu (6)

Tcomm
  = [2(Px + Py – 2) + 4(Nsweep – 1)]*Tmsg  (7)

The major remaining question is whether the separate
contributions, Tcomp and Tcomm, can be summed to derive
the total time.  They would not be additive if there were
any additional overlap of communication with computa-
tion not already accounted for in each term.  In a previous
publication [ 16] we used a task graph for an execution
consisting of two wavefronts on a 3 x 3 processor grid
(Figure 6) to demonstrate that the critical path for the cal-
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culation is exactly the number given by eqns. (2) and (4).
In summary, total time for the sweep algorithm is the

sum of eqns. (6) and (7), where Tcpu is given by eqn. (3)
and Tmsg is given by eqn. (5). Validation of the model
against experiment involves the measurement and/or mod-
eling of Tmsg , the time needed for the completion of a
send/receive pair of an appropriate size, and Tcpu , the time
for the subgrid computation on each processor.

4. Validation of the Model

In this section, we present results that validate the
model with performance data from SWEEP3D on three
different machines, with up to 500 processors, over the
entire range of the various model parameters.  Note that
all figures use (Px +Py) as the abscissa, since this follows
naturally from eqns. (6) and (7).  These equations suggest
the following validation regimes:

Nsweep = 1: Validates the number of pipeline stages in Tcomp

and Tcomm, as functions of  (Px +Py), in the available range
of processor configurations.

Nsweep ~ (Px+Py): Validation of a case where the contribu-
tions of the (Px+Py)and Nsweep terms are comparable.

Nsweep >> (Px+Py): Validates the pipeline repetition rate.

For each of these cases, we analyze problem sizes chosen
in such a way as to make:

Tcomp >> Tcomm; (validate equation. (6) only)
Tcomp  = 0; (validate equation. (7) only)
Tcomp ~ Tcomm; (validate the sum of equations. (6) and (7))

4.1  Nsweep = 1

For a single sweep, the coefficients of Tmsg and Tcpu in
equations 6 and 7 represent the number of communication
and computation stages in the pipeline, respectively.  Any
overlap in communication or computation during the sin-
gle sweep of the mesh is encapsulated in the respective
coefficients.  In hypothetical problems with Tmsg ~ Tcpu,
and in the limit of large processor configurations (large
Px+Py), equations 6 and 7 show that the communication
component of the elapsed time would be twice as large as
the contribution of the computation time.  In reality, for
problem sizes and partitionings reasonably designed
(small subgrid surface-to-volume ratio), Tcpu is considera-
bly larger than Tmsg.  Computation is the dominant com-
ponent of the elapsed time.

This is apparent in Figure 7, which presents the model-
experiment comparison for a weak scalability analysis of a
16 x 16 x 1000 subgrid size sweeping only one octant.
This size was chosen to reflect an estimate of the subgrid
size for a 1-billion cell-problem running on a machine
with about 4,000 processors; the former is a canonical
goal of ASCI and the latter is simply an estimate of the

machine size that might satisfy a 3-TFLOPS-peak per-
formance requirement.  In a “weak scalability” analysis,
the problem size scales with the processor configuration
so that the computational load per processor stays con-
stant.  This experiment shows that the contribution of
communication is small (in fact, the model shows that it is
about 150 times smaller than computation), and the model
is in very good agreement with the experiment.

In the absence of communication our model reduces to
the linear “parallel computational efficiency” models used
by Baker [9] and Koch [3] for SN performance, in which
parallel computational efficiency is defined as the fraction
of time a processor is doing useful work.

To validate the case with Nsweep = 1 and “comparable”
contributions of communication and computation we had
to use a subgrid size that is probably unrealistic for actual
production simulation purposes (5 x 5 x 1).  Even with
this size computation outweighs communication by about
a factor of 6.  Figure 8 depicts a weak scalability analysis
on the SGI Origin 2000 for this size.  The model-
experiment agreement is again very good.

Validation of cases where Tcomp  = 0 involved the using
a code that simply implements a receive-west, receive-
north, send-south, send-east communication pattern en-
closed in loops that initiate multiple waves; i.e., there is
no computation.  Figure 9 shows a very good agreement
of the model with the measured data from this code.

4.2  Nsweep  ~ (Px+Py)

As described in Section 3, sweeps of the domain gen-
erated by successive octants, angle blocks, and k-plane
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Figure 7.  Tcomp dominant. Nsweep = 1. IBM RS/6000.
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Figure 8. Tcomp ~ Tcomm. Nsweep = 1. SGI Origin.

blocks are pipelined, with the depth of the pipeline,
Nsweep, given by the product of the number of octants, an-
gle blocks, and k-plane blocks.  We can select k- and an-
gle-block sizes so that Nsweep = 10, which, in turn, balances
the contribution of Nsweep and  (Px+Py) for processor con-
figurations used in this work.  In Figure 10 the comparison
using a data size for which Tcomp is dominant is presented,
showing an excellent agreement with the measured
elapsed time.

The case with no computation is in fact a succession of
10 sweeps of the domain, with the communication overlap
described by equation 6.  Figure 11 shows a very good
agreement with experimental data for this case.

An excellent model-experiment agreement is similarly
shown in Figure 12, for a subgrid size 5 x 5 x 1, which
leads to balanced contributions of the communication and
computation terms to the total elapsed time of SWEEP3D.
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Figure 9. Tcomp=0.  Nsweep = 1. SGI Origin.
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Figure 10. Tcompdominant. Nsweep = 10. SGI Origin
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Figure 11.  Tcomp=0. Nsweep = 10. CRAY T3E.
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Figure 12 Tcomp dominant.Nsweep=10. SGI Origin

4.3  Nsweep >> Px+Py

We present model-data comparisons using weak scalabil-
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ity experiments for cases in which Nsweep is large compared
with (Px+Py) in Figure 13 (6 x 6 x 360 subgrid; Tcomp ~
Tcomm) and in Figure 14 (16 x 16 x 1000 subgrid; Tcomp

dominant).  The model is in good agreement with the
measured execution times in both cases.

4.4  Strong Scalability

In a “strong scalability” analysis, the overall problem size
remains constant as the processor configuration increases.
Therefore, Tmsg and Tcpu vary as the subgrid size decreases.
In Figure 15 comparison between measured and modeled
time for a strong scalability analysis out to nearly 500
processors on a 50 x 50 x 50 global problem is shown.
The agreement is excellent.
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Figure 13.  Tcomp ~ Tcomm. 6 x 6 x 360. Nsweep large.
CRAY T3E. Kb = 10.
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Figure 14.  Tcomp dominant.  16 x 16 x 1000. Nsweep

large.  IBM RS/6000 SP.
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Figure 15.  Strong Scalability.  CRAY T3E.

4.5  Blocking tradeoffs

It is of interest to investigate whether the model cap-
tures the variation of the elapsed time with the size of the
angle- and k-blocks.  In particular, it is important that the
model correctly predicts the optimal angle- and k- block-
ing values for different problem sizes.

Intuitively, larger block sizes increase the computa-
tion/communication ratio due to fewer communication
steps and larger message sizes.  For wavefront algorithms
a tradeoff occurs because smaller blocks lead to better
parallel efficiency as the wavefronts have a more rapid
succession over the processor array.  For specific subgrid
size and machine characteristics, unique optimal values
for the blocking parameters result from this tradeoff.

Figure 16 shows modeled and experimental data for a
16 x 16 x 1000 subgrid with 10 k-planes per block.  Com-
pare this with Figure 17 which shows the same data on
this subgrid size but with one k-plane per block.  A similar
comparison using a 6 x 6 x 360 subgrid is shown in Fig-
ures 18 and Figure 13 (above).  For a 6 x 6 x 360 subgrid
size, 10 planes per block leads to lower elapsed time,
whereas for the 16 x 16 x 1000 subgrid, 1 plane per block
is optimal.

The explanation is that (on the T3E),  for the smaller
subgrid (6 x 6 x 360), larger k-blocks are required in order
to increase the computation time and decrease communi-
cation.  In contrast, the larger grid (16 x 16 x 1000) al-
ready affords a better computation/communication ratio,
so that the smaller k-block yields higher parallel effi-
ciency.  In this case, the more wavefronts generated, the
better the runtime.

The model resolves the tradeoff, predicting accurate
values for the blocking parameters for any grid size and
machine characteristics.
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Figure 16.  16 x 16 x 1000.  CRAY T3E. Kb = 10.
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Figure 17.  16 x 16 x 1000.  Cray T3E. Kb =1.
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Figure 18.  6 x 6 x 360. CRAY T3E.  Kb =1.

5. Applications of the Model.  Scalability Predictions.

Performance models of applications are important to
computer designers trying to achieve proper balance be-
tween performance of different system components. ASCI
is targeting a 100-TFLOPS system in the year 2004, with

a workload defined by specific engineering needs.  In this
section we apply our model to predict the machine pa-
rameters under which the runtime goal might be met.  We
assume a 100-TFLOPS-peak  system  composed  of about
20,000 processors (5 GFLOPS peak per processor, an
extrapolation of Moore’s law).

Three sources of difficulty with such a prognosis are
(1) making reasonable estimates of machine performance
parameters for future systems; (2) managing the
SWEEP3D parameter space (i.e., block sizes); and (3)
estimating what problem sizes will be important.  We
handle the first by studying a range of values covering
both conservative and optimistic changes in technology.
We handle the second by reporting results that correspond
to the shortest execution time (i.e., we use block sizes that
minimize runtime).  We handle the third as follows.

For particle transport, one ASCI target problem in-
volves O(109) mesh points, 30 energy groups, O(104) time
steps, and a runtime goal of about 30 hours.  With 5,000
unknowns per grid point, this requires about 40 TBytes
total memory. On 20,000 processors the resulting subgrid
size is approximately  6 x 6 x 1000.  In a different ASCI
scenario,  particle transport problem size is determined by
external factors. Based on [17], such computations will
involve smaller grid sizes (20 million cells) but the full
resources of the machine are still used. The 20 million-cell
problem would utilize a 2 x 2 x 250 subgrid.

5.1. The 1 Billion-Cell Problem

Plots showing dependence of runtime with sustained
processor speed and latency MPI communications latency
are shown in Figures 19 and 20 for several k-plane block
sizes and using optimal values for the angle-block size.
Table 1 collects some of the modeled runtime data for a
few important points: Sustained processor speeds of 10%
and 50% of peak, and MPI latencies of 0.1, 1, and 10 mi-
croseconds.  Our model shows that the dependence on
bandwidth is small,  and as such no sensitivity plot based
on ranges for bandwidth is presented.  All results assume
400 Mbytes/s MPI bandwidth [18].

One immediate observation is that runtime under the
most optimistic technological estimates in Table 1 is still
larger than the 30-hour goal by a factor of two.  The goal
could be met if, in addition to these values of processor
speed and MPI latency, we used what we believe to be an
unrealistically high bandwidth of 4 GBytes/s.

Assuming a more realistic sustained processor speed
of 10%  of  peak  (based  on  data  from  today's systems),
Table 1 shows that we miss the goal by about a factor of
six even when using 0.1 μs MPI latency.  With the same
assumption for processor speed, but with a more conser-
vative value for latency (1 μs), the model predicts that we
are a factor of 6.6 off.  In fact, our results show that the
best way to decrease runtime is to increase sustained per-
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processor performance. Changing the sustained processor
rate by a factor of five decreases the runtime by a factor of
three, while decreasing the MPI latency by a factor of 100
reduces runtime by less than a factor of two.  This is a
result of the relatively low communication/computation
ratio that our model predicts.  For example, using values
of 1 μs and 400 MB/sec for the communication latency
and bandwidth, and a sustained processor speed of 0.5
GFLOPS, the communication time will only be 20% of
the total runtime.
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Figure 19. Model-projected sensitivity of the bil-
lion-cell transport sweep time to sustained per-
processor CPU speed on a hypothetical 100-
TFLOPS system for several   k-plane block sizes.
MPI latency = 15 ms, bandwidth = 400 Mbytes/s.

Table 1.  Estimates of SWEEP3D Performance on a Future-Generation System as a
Function of MPI Latency and Sustained Per-Processor Computing Rate

10% of Peak 50% of Peak

MPI Latency Runtime (hours)
Amount of

Communication Runtime (hours)
Amount of

Communication
0.1 μs 180 16% 56 52%
1.0 μs 198 20% 74 54%
10 μs 291 20% 102 58%
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Figure 20. Model-projected sensitivity of the
billion-cell transport sweep time to MPI latency
on a hypothetical 100-TFLOPS system for
several k-plane block sizes.  Sustained per-
processor CPU speed = 500 MFLOPS, bandwidth
= 400 Mbytes/s.
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Figure 21.  Model-projected sensitivity of a 20
million-cell transport sweep time to sustained
per-processor CPU speed on a hypothetical 100-
TFLOPS system for several k-plane block sizes.
MPI latency = 15 μs, BW=400 MB/s.
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5.2. The 20 million-cell problem

Communication is important for this problem size
– the model predicts that communication time ranges
from one-half the total time to two-thirds of the total
time depending on specific values for the latency and
processor speed. The contribution of bandwidth to the
communication cost is, again, negligible.  Figures 21
and 22 show the runtime variation with MPI latency
and sustained processor speed, respectively. For this
problem size latency and processor speed are equally
important in decreasing the runtime, as expected
given the fact that the communication time is now a
significant component of the total runtime.
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Figure 22. Model-projected sensitivity of the
20 million-cell transport sweep time to MPI
latency on a hypothetical 100-TFLOPS system
for several k-plane block sizes. Sustained per-
processor CPU speed = 500 MFLOPS, band-
width = 400 MB/s.

6.  Wavefront Algorithms on Clusters of SMPs

Equation (4) gives the number of steps required for a
communication wavefront to pass through the 2-D
processor grid.  Implicit in this equation is the diagonal
concurrency in communication operations shown in
Figure 5.  All discussion to this point assumes sufficient
network links to preserve this concurrency. We now
discuss the case of a cluster of SMPs, in which a portion
of the network contains fewer links than required,
resulting in messages that "collide" when sharing a
common link. We seek to quantify the impact of this
topological modification on the overall runtime of
SWEEP3D. Although we have not yet obtained a closed-

form analytic model to predict this behavior, we present
initial results characterizing the additional complexity of
this situation.  As an example, consider a two-by-two
cluster of 16-processor SMPs, assuming complete
connectivity within each SMP, but only a single link
between SMPs. Figure 23 follows the progress of three
communication wavefronts pipelined through such a
system.  Note that the second wave ends on communica-
tion step 33 , whereas equation (4) predicts 32 steps. This
is due to a conflict on communication step 14 of the
second wave, indicated by the boxed label.  Communica-
tion step 13 in the second wave collides with a communi-
cation step 13 in the first wave.  Subsequent waves will
also be delayed even more as the number of collisions
increases. We have developed a computer code that
calculates the number of communication steps for any
SMP configuration and for any number of links between
SMPs.  Instead of a closed-form solution given by
equation (4), the model for clusters of SMPs necessarily
involves a recursive step in which the number of commu-
nication steps is obtained from the computer program. As
an example, assume a system configuration of 144 X 144
processors, composed of a 9 X 9 cluster of SMPs. Each
SMP has 128 processors, which we view as a logical 16 X
16 array. (This system has about the same number of
processors as the 100-TFLOPS system studied in Section
5.)  Equation (4) predicts that, given full interprocessor
bandwidth, the number of communication steps in order to
complete 160 sweeps is 1,208. (This is the number of
sweeps per timestep per inner iteration in the 1-billion-cell
problem of Section 5.1.) By contrast, assuming that each
SMP is connected by only one link in each direction
(north-south and east-west), the number of communication
steps needed is 3,315. The communication component of
the total runtime has increased threefold, even neglecting
the effect of higher inter-SMP MPI latency.

The number of computation steps is identical to that
given by equation (2), although computational waves will
no longer follow a diagonal path; rather, they will be
“wavy”, with the distortion caused by the delay of
additional communication steps.  The revised formula for
the total time is given by the following equation

where Ns
'Comm,  the new number of communication steps,

is that calculated  by the computer code. In the hypotheti-
cal limit of Tmsg = 0, this equation reduces to the compu-
tational time given by (6). Simply stated, the additional
runtime of SWEEP3D on a cluster of SMPs is solely due
to the increased communication time.

cpu
Comp
smsg

Comm
s TNTNT ** +′=
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Figure 23.  Communication steps on a cluster of SMPs consisting of
one 16-processor SMP (4x4) in the upper left and portions of three other
SMPs shown.  Labels on each edge correspond to the communication
steps of three consecutive sweeps.  Dashed lines represent shared links
between SMPs.

7. Conclusions

We introduced a scalability model for parallel, multi-
dimensional, wavefront calculations with machine
performance characterized using three parameters.  The
model accounts for overlap in communication and
computation.  Agreement with experimental data is very
good under a variety of model sizes, data partitionings,
blocking strategies, and on three different parallel
architectures.  Using our model, we analyzed performance
of a deterministic transport code on a hypothetical future
parallel system of interest to ASCI.
A proposed 100-TFLOPS system with conservative
estimates for communication bandwidth and latency
improvements would not be capable  of  running  a

billion-point ASCI SN problem within time-limit goals.
Our analysis showed that contrary to conventional
wisdom, inter-processor communication performance was
not the bottleneck for such a problem, although communi-
cation does became important for smaller problem sizes.
For the largest problem, single-node efficiency was the
dominant factor.

In the case of an SMP cluster with reduced connec-
tivity between SMPs, preliminary analysis in this work
showed a three-fold increase in the number of communi-
cation steps required for the billion-cell problem on a 100-
TFLOPS system.  A future publication will further refine
the cluster of SMP model and validate it on the ASCI
Bluemountain cluster.
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