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ABSTRACT 

In this work we present an initial performance evaluation of Intel's latest, second-
generation quad-core processor, Nehalem, and provide a comparison to first-generation 
AMD and Intel quad-core processors Barcelona and Tigerton. Nehalem is the first In­
tel processor to implement a NUMA architecture incorporating QuickPath Interconnect 
for interconnecting processors within a node, and the first to incorporate an integrated 
memory controller. We evaluate the suitability of these processors in quad-socket com­
pute nodes as building blocks for large-scale scientific computing clusters. Our analysis of 
intra-processor and intra-node scalability of microbenchmarks, and a range of large-scale 
scientific applications, indicates that quad-core processors can deliver an improvement in 
performance of up to 4x over a single core depending on the workload being processed. 
However, scalability can be less when considering a full node. We show that Nehalem 
outperforms Barcelona on memory-intensive codes by a factor of two for a Nehalem node 
with 8 cores and a Barcelona node containing 16 cores. Further optimizations are pos­
sible with Nehalem, including the use of Simultaneous Multithreading, which improves 
the performance of some applications by up to 50%. 

Keywords: Performance Analysis, Multi-core, Scientific Applications 

1. Introduction 

The advancing level of transistor integration is producing increasingly complex pro­
cessor solutions ranging from mainstream multi-cores, heterogeneous many-cores, 
to special purpose processors (e.g. GPUs). There is no doubt that this will continue 
into the future until Moore's Law can no longer be satisfied. This increasing inte­
gration will require improvements in performance of the memory hierarchy to feed 
the processors. Innovations such as putting memory on top of processors, putting 
processors on top of memory (PIMS), or a combination of both may be a future di­
rection forward. However, the utility of future processor generations will be a result 
of demonstrable increases in achievable performance from real workloads. 
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In this work we examine the performance of the latest, second-generation quad-
core processor from Intel, the quad-core Core i7 (Nehalem-EP). We compare its 
performance to that of two first-generation quad-core processors, the AMD Opteron 
8350 (Barcelona) and the Intel Xeon X7350 (Tigerton). Nehalem is implemented 
using a 45nm fabrication technology and represents an advance in terms of a single 
Moore's Law cycle from the 65nm process used for both Barcelona and Tigerton. 

The performance of three nodes, one containing two Nehalem processors (8 
cores), one containing four Barcelona processors (16 cores), and one containing four 
Tigerton processors (16 cores) are compared. Our analysis relies on performance 
measurements of application-independent tests (microbenchmarks) and a suite of 
scientific applications taken from existing workloads within the U.S. Department 
of Energy that represent various scientific domains and program structures. These 
processors and the nodes built around them are of particular interest because they 
implement explicit parallelism at multiple levels: within core (Nehalem), within 
processor, and within node. These processors represent the first and second genera­
tions of competing quad-core technologies and are or will be the building blocks of 
large-scale parallel computers. 

The performance and scaling behavior of each application was measured on one 
core, when scaling from one to four cores on a single processor, and when using all 
processors in a node. In addition, we determined the best achievable performance 
of each application on each node, which is not necessarily when using all processing 
cores within a socket, or all cores within a node. This is heavily dependent on 
the application characteristics. Though much of our work is focused on large-scale 
system performance, including that of the largest systems available such as Blue 
Gene/L and Blue Gene/P, ASC Purple, ASC Redstorm [1] and Roadrunner [2], we 
note that the performance at large scale is a function of both the performance of 
the computational nodes as well as their integration into the system as whole. 

This paper is organized as follows. An overview of the Barcelona, Tigerton, and 
Nehalem nodes is given in Section 2. Low-level microbenchmarks are described in 
Section 3, together with measured results from each node. Section 4 describes the 
suite of applications, the input decks used, and the methodology used to undertake 
the scalability analysis. Results are presented in Section 5 for the three types of 
analysis as described. Further possible optimizations on Nehalem are discussed in 
Section 6. Conclusions from this work are discussed in Section 7. 

The contribution of this work is in the analysis of empirical performance data 
from a suite of complete scientific applications on the latest Intel Nehalem processor 
and first-generation quad-core processors from both AMD and Intel. These data are 
obtained from a strict measurement methodology to ensure that conclusions drawn 
from the scalability analysis are fair. Note that in this present work we do not 
consider physical or economic issues such as hardware cost, power consumption, or 
physical node size. The process that we follow is directly applicable to other multi-
core studies. This work builds on the comparative analysis between Barcelona and 
Tigerton previously published [3]. 
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2. Processor and Node Descriptions 

Here we give an overview of the Intel Nehalem, AMD Barcelona, and Intel Tigerton 
quad-core processors. Barcelona and Tigerton represent competing first-generation 
quad-core processor designs first available in September 2007, whereas Nehalem is a 
second-generation quad-core processor expected to be available in November 2008. 
All three are detailed below and illustrate quite different implementations both in 
terms of processor configuration and connectivity to memory. 

2.1. The Intel Nehalem quad-core Xeon processor 

Nehalem will form the basis of a range of 64-bit processors over the next few years 
under the brand name Intel Core i7. The Nehalem-EP is a first in this family and 
uses 45nm fabrication. It has four cores each with 64KB LI cache (32KB data + 
32KB instruction)and 256KB L2 cache, and an 8MB shared L3 cache. The on-
chip memory controller supports three DDR3 memory channels. In addition, two 
QuickPath Interconnect (QPI) channels allow two processors to be interconnected, 
effectively implementing a non-uniform memory access (NUMA) architecture, as 
well providing I/O connectivity. A further development expected in 2009 is the 
Nehalem-EX that will contain an increased number of cores—6 or 8 per processor, 
an increased number of QPI channels, and a larger L3 cache. The Nehalem-EP is 
depicted in Figure 1(a), and a two-processor node is depicted in Figure 1(b). 

Our performance analysis is of a pre-production Nehalem node. We expect pro­
duction hardware to achieve a similar level of performance. The node consisted of 
two processors clocked at 2.8GHz. Each processor core can issue 4 double-precision 
floating-point operations per clock resulting a peak performance of 44.8Gflops/s 
per chip. The processors were connected via a single QPI with a peak link transfer 
speed of 6.4GT/s, where a single transfer consists of 2B per direction. The node 
contained three DDR3 1333MHz memories per processor for a total of 24GB. 

The Nehalem also has the capability of Simultaneous Multi-Threading (SMT) 
with two threads per core [4]. Its aim is to hide memory latencies by switching 
between the hardware threads on memory stalls. SMT can significantly improve 
application performance, as we show in Section 6 and should not be considered 
similar to Intel's previous Hyper-Threading. 

2.2. The AMD Barcelona quad-core Opteron processor 

Barcelona, the latest generation of the Opteron, combines four Opteron cores onto a 
single die as shown in Figure 1(c), using 65nm fabrication, with a process shrink to 
45nm expected in late 2008. Each die contains a single integrated memory controller 
and uses a HyperTransport (HT) network for point-to-point connections between 
processors [5]. Each core has a private 64KB LI cache (32KB data -h 32KB in­
struction) and a private 512KB L2 cache, and each processor has a shared 2MB 
L3 cache. The shared L3 cache is new to the Opteron architecture as are 128-bit 
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SSE4a instructions enabling each core to issue 4 double-precision floating-point op­
erations per clock. The clock speed of each core is 2.0GHz giving each chip a peak 
performance of 32Gflops/s. 

Each node contains four quad-core processors as shown in Figure 1(d). DDR2 
667MHz memory is used and thus the memory bandwidth per processor is 10.7GB/s. 
The total memory capacity of the node is 16GB (4GB per processor). The HT links 
connect the four processors in a 2 x 2 mesh, and effectively implement a NUMA 
architecture. Further HT links provide PCI Express I/O capability. Each HT link 
has a theoretical peak of 8GB/s for data transfer. 

2.3. The Intel Tigerton quad-core processor 

The Intel Tigerton processor [6] contains two dual-core dies, using 65nm fabrication, 
that are packaged into a single dual-chip module (DCM) that is seated within a 
single socket as shown in Figure 1(e). Each core contains a private 64KB LI cache 
(32KB data + 32KB instruction), while the two cores on each die share a 4MB L2 
cache for a total of 8MB L2 cache within the DCM. The processor implements the 
128-bit SSE3 instruction set for SIMD operations and thus can perform 4 double-
precision floating-point operations per cycle. The processor is clocked at 2.93GHz 
so the DCM has a theoretical peak performance of 46.9 Gflops/s. 

Each node contains four processors for a total of 16 cores as shown in Fig­
ure 1(f), and contains a total of 16GB of main memory using fully-buffered DIMMs 
(FBDIMMs). Central to the node is a single memory controller hub (MCH). This 
hub interconnects the front side bus (FSB) of each processor to four FBDIMM 
memory channels. Unlike the NUMA configuration of its successor Nehalem (and of 
Barcelona), Tigerton is a symmetric multiprocessor (SMP) configuration. The MCH 
contains a 64MB snoop buffer and a Dedicated High Speed Interconnect (DHSI) 
as well as PCI Express channels. The purpose of the snoop buffer is to minimize 
main memory accesses, while the DHSI provides a point-to-point link between each 
processor and the memory channels. The FSB of each processor runs at 1066MHz. 
The memory speed is 667MHz and thus provides a peak memory bandwidth of 
10.7GB/s per processor that is shared by the four cores. 

Table 1. Characteristics of the quad-core processors, memory, and node organization. 

Nehalem 
Barcelona 
Tigerton 

Speed 
GHz 
2.8 
2.0 
2.93 

Processor 
Peak 

Gflops 
44.8 
32 

46.9 

LI 
KB 
64 
64 
64 

L2 
MB 
0.25 
0.25 

4 

L3 
MB 

8 
2 
-

Memory 
Type Speed 

MHz 
DDR3 1333 
DDR2 667 

FBDIMM 667 

Node 
Memory 

controllers 
2 
4 
1 

Peak 
Gflops 

89.6 
128.0 
187.6 

A summary of the three processor architectures and nodes is presented in Ta­
ble 1. The peak performance of each processor, and each node configuration is shown 
as well as characteristics of the memory hierarchy. Note that the L2 cache is shared 
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Fig. 1. Overview of the Nehalem, Barcelona and Tigerton Quad-core processors 
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across the two cores on each die in Tigerton, and that the L3 cache is shared across 
the four cores on Nehalem and Barcelona. 

3. Low-level performance characteristics 

3.1. Memory bandwidth 

To measure the memory bandwidth per core we ran the MPI version of the Uni­
versity of Virginia's Streams benchmark [7]. This benchmark is a memory stress 
test for a number of different operations. We report here the performance of the 
triad test. In Figure 2(a) the aggregate memory bandwidth is shown for Nehalem, 
Barcelona, and Tigerton nodes for two cases: using a single processor and using all 
processors in the node. The number of cores per processor used in both cases is 
varied from one to four. In all cases the Nehalem node significantly outperforms the 
Barcelona node which in turn outperforms the Tigerton node. The measured single-
core memory bandwidths are 12.1GB/s on Nehalem, 4.4GB/s on Barcelona, and 
3.7GB/s on Tigerton. The aggregate memory bandwidths are 35.8GB/s, 17.4GB/s, 
and 10.2GB/s, respectively. Note that the aggregate bandwidth is achieved from 
two processors (8 cores) on the Nehalem node, compared to four processors (16 
cores) on the Barcelona and Tigerton nodes. 

Figure 2(b) is based on the same data as Figure 2(a) but presents the observed 
memory bandwidth per core. As shown, the per-core bandwidth decreases from 
12GB/s (one core per socket) to 4.6GB/s (four cores per socket) for Nehalem (a 
factor of 2.6 decrease), 4.4GB/s to l . lGB/s for Barcelona (a factor of 4.0 decrease), 
and from 3.7GB/s to 0.63GB/s for Tigerton (a factor of 5.9 decrease). These de­
creases are significant: the aggregate achievable memory bandwidth is important to 
memory-intensive applications, but the Nehalem node has a clear advantage over 
both Barcelona and Tigerton in these cases. 

40 -, , 16 

1 2 3 4 1 2 3 4 
Cores Per Processor Cores Per Processor 

(a) Aggregate memory bandwidth (b) Memory bandwidth per core 

Fig. 2. Streams Memory Bandwidth. 
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3.2. Processor locality 

The mapping of application processes to cores within a node affects the memory 
contention that the application induces. In our experience, the task-to-core ordering 
is not always obvious and should at a minimum be verified. Linux determines core 
numbering via information provided by the BIOS. 

In this testing we used an MPI benchmark to measure the latency between 
each core and all of the others. The latency varies depending on whether the two 
communicating cores are on the same die, on different dies in the same processor 
(in the case of Tigerton), or different processors (or single- or multiple-hop remote 
processors for Barcelona). Note for comparison we show the latency between threads 
for the Nehalem node which implements a total of 16 threads using SMT. 
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Fig. 3. Observed MPI latency from any core to any other core in a node. 

From our latency measurements we were able to determine the arrangement 
of the cores as seen by an application. Figure 3 shows the observed latency from 
this test in the form of a matrix. The vertical axis indicates the sending core (or 
thread) and the horizontal axis is the receiving core (or thread). Shading is used to 
denote the different latencies. No test was performed for a core sending to itself (the 
major diagonal in the matrix). The Barcelona node uses a linear ordering of cores 
to processors, that is, the first four cores reside on the first processor as indicated 
by the lowest latency, blocks of size 4x4 cores in Figure 4(b), and so on. In both the 
Tigerton and Nehalem nodes a round-robin ordering across dies is used. Cores on 
the same die are an MPI logical task distance of eight apart, as shown by the black 
diagonal lines in Figure 4(c). As shown in Figure 4(a), in the case of Nehalem, even 
threads are mapped to a one processor, and odd threads are mapped to the other 
processor. 

The latency from one core to another is in very distinct ranges depending on 
their relationship (same die, remote die, etc.). We observe that the maximum latency 

http://0-78~0.80i.is
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is similar on all nodes, but Nehalem and Tigerton enjoy a much lower intra-die 
and intra-processor latency. The core and processor ordering was actually shown in 
Figure 1 based on the observed processor locality map shown in Figure 3. To handle 
the differences in the processor numbering between the nodes we implemented a 
small software shim that uses the Linux schedsetaffinity() system call to allow 
user-defined mappings between MPI rank and physical cores. This shim gave us 
the ability to map processes to cores identically across the three nodes and thereby 
perform fair comparisons of application performance. 

4. Application testing process 

Our application suite includes several large-scale production applications that are 
currently used within the U.S. Department of Energy. The testing for each applica­
tion consisted of 

(1) comparing the performance on a single core of the Nehalem, Barcelona and 
Tigerton; 

(2) examining the scaling behavior for two cases: (a) using only one processor, and 
(b) using all processors in a node; 

(3) determining the configuration (processors, and cores per processor) that yields 
the best performance. 

All of the applications are typically run in a weak-scaling mode. That is, the 
global problem size grows with the number of nodes in the system. All available 
memory is typically used for increased fidelity in the physical simulations or for 
simulating larger physical systems. Our approach mimics typical usage by fixing the 
sub-problem per processor regardless how many cores per processor are used. The 
global problem grows in proportion to the number of processors used. This may be 
stated succinctly as doing strong scaling within a processor and weak scaling across 
processors. 

4 .1 . The application suite 

An overview of each application is given below. Each is typically run on high-
performance parallel systems using many thousands of processors at a time. A 
summary of the application input decks used is given in Table 2. The input decks 
are typical for problems processed on large-scale systems. Also indicated in Table 2 
is the main processing characteristic of each application, for example, whether an 
application is compute intensive, memory intensive, or both. 

• GTC - Gyrokinetic Toroidal Code is a Particle-in-Cell (PIC) code from Prince­
ton [8]. It was developed to study energy transport in fusion devices. 

• Partisn - SN transport code from Los Alamos solving the Boltzmann equation 
using the discrete ordinates method, on structured meshes [9]. 
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• SAGE - an adaptive mesh (AMR) hydrodynamics code used for the simulation 
of shock waves. Developed jointly by Los Alamos and SAIC [10]. 

• SPaSM - the Scalable Parallel Short-range Molecular dynamics code from Los 
Alamos. Used to study material fracture and deformation properties [11]. 

• Sweep3D - a code-kernel from Los Alamos that implements deterministic SN 
transport [12, 13]. The computation is in the form of wavefronts that originate 
at the corners of a 3-D physical space. 

• VH1 - the Virginia Hydrodynamics code simulates an ideal inviscid compress­
ible flow of gas hydrodynamics and is capable of simulating three-dimensional 
turbulent stellar flows [14]. 

• VPIC - a Particle-In-Cell code from Los Alamos used to model particle flow 
within a plasma [15]. 

Table 2. Summary of the input decks used for each application. 

GTC 
Partisn 
SAGE 
SPaSM 
Sweep3D 
VH1 
VPIC 

Input deck 

ID wedge 
Pencil 

t imingJi 
BCC 

Pencil 
ShockTube 
3D-HOT 

Problem per 
processor 

6.2M particles 
20x10x400 
140K cells 
64x64x64 

20x10x400 
200x200x200 
4M particles 

Memory per 
processor 

320MB 
80MB 

280MB 
150MB 
8MB 

900MB 
256MB 

Processing 
characteristic 
Particle based 

Memory / Compute 
Memory 
Compute 

Kernel, small memory 
Memory / Compute 

SSE, memory 

5. Application Performance Analysis 

5.1. Single-core performance comparison 

The performance of each application on a single core of each of the three processors 
is shown in Figure 4(a). The metric time denotes the iteration time of the main 
computational loop (without I/O) for all applications except Sweep and Partisn, 
for which it is 10 iterations, and VPIC, for which it is 100 iterations, to aid visual 
comparison. The relative runtime, between the Nehalem and Barcelona, and be­
tween the Nehalem and Tigerton, is shown in Figure 4(b). A value of one indicates 
the same performance between two processors, and a value of two indicates a 2x 
performance advantage of Nehalem. 

As shown, a Nehalem core is between 1.1 and 1.8 times faster than a Tigerton 
core, and between 1.6 and 2.9 times faster than a Barcelona core, for the applications 
tested. Note that the clock speed advantage of Nehalem over Barcelona is a factor of 
1.4 indicating that the performance advantage arises in part from the core design and 
from the faster memory subsystem. Also note that the Nehalem has a slower clock 
speed than Tigerton, but achieves a higher level of performance for all applications 
again due to improvements in the core design and the memory subsystem. 
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Fig. 4. Single-core performance comparison. 

5.2. Single-processor performance comparison 

The performance of each application on a single processor is shown in Figure 5(a). 
The basis for this comparison is the same as that used in single core comparison. 
The relative runtimes between Nehalem and Barcelona, and between Nehalem and 
Tigerton, is shown in Figure 5(b). 

As shown, the Nehalem processor achieves performance between 1.4 and 3.6 
times higher than a Tigerton processor and between 1.5 and 3.3 times faster than 
a Barcelona processor. Thus the scaling behavior of the applications on both the 
Nehalem and Barcelona processors seem similar when comparing Figures 4(b) and 
5(b), whereas the scaling behavior is significantly worse on Tigerton. This lack of 
scaling on Tigerton can be attributed in part to the poorer performance of the 
memory subsystem. 

5.3. Node performance comparison 

The best performance achieved for each application on the Nehalem node (8 cores), 
the Tigerton node (16 cores), and the Barcelona node (16 cores) is shown in Figure 6. 
Note that only relative performance is considered here. The relative performance 
was calculated using the effective processing rate for each application since the core 
count and hence the problem size for each application differed between the nodes. 

Figure 6 shows that for five of the seven applications the Nehalem node (contain­
ing 8 cores) outperforms Tigerton node (containing 16 cores) and for six application 
the Nehalem node outperforms the Barcelona node. For SAGE, the most memory 
intensive application, the Nehalem node outperforms the Tigerton node by 3.0x and 
the Barcelona node by 2.8x. The Nehalem node actually achieved a lower level of 
performance on Sweep3D than the other two nodes, but was slightly higher per­
forming than Barcelona for SPaSM. 
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• Barcelona (2.0GHz) 

0 Tigerton (2.93GHz) 
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(a) Application iteration time (b) Performance advantage of Nehalem 

Fig. 5. Single-processor performance comparison. 

Fig. 6. Nehalem performance advantage (Node) 

The results shown in Figure 6 are in line with the differences in the memory 
bandwidth measurements in Section 3.1. The node memory bandwidth on Nehalem 
is 35.8GB/s, on Barcelona 17.4GB/s, and on Tigerton 10.2GB/s. The ratio of the 
node memory bandwidths is very close to the ratio in the performance between the 
nodes for SAGE. The memory footprint of Sweep3D is small and fits into cache on 
all processors. Thus the performance advantage (or disadvantage at 0.84x) is close 
to the ratio of the clock speeds (2.8GHz vs. 2.0GHz) multiplied by the ratio of the 
number of cores in each node (8 vs. 16) = 0.7x. The remaining difference is due to 
micro-architecture differences. 

Note however that the performance presented above is based on the best ob­
served node performance, which does not necessarily result when using all 16 cores 
in the node. In fact the best performance observed on VPIC and Partisn was when 
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using two cores per processor (8 cores total), and for SAGE when using three cores 
per processor (12 cores total) on the Tigerton node. The best performance in all 
other cases was observed when using all cores in a node. This is illustrated in below 
when analyzing the performance as a function of the number of cores and number 
of processors used for each application. 

5.4. Application scalability analysis 

To analyze the performance of using multiple cores we followed a strict process 
in which the problem size per processor was constant for all tests, as described in 
Section 4. For each application we show the performance when using between one 
and four cores per processor for the case of using one processor, shown in Figure 
7, and all the processors in a node, shown in Figure 8. Note that the performance 
relative to the single-core performance for each processor type is shown—this is the 
speedup when using multiple cores. Note also that the legends for all graphs are 
shown separately in Figure 7 and Figure 8. 
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Fig. 7. Application speedup on a single processor. 

The scalability of five of the applications is very good on a single Nehalem and a 
single Barcelona processor, as shown in Figure 7, achieving a speedup of over three 
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out of a theoretical maximum of four when using all four cores. A lower speedup is 
observed for the two more memory intensive codes SAGE and Partisn. Poor scaling 
is observed on Tigerton for most of the applications. The performance when using 
four cores is often not significantly higher than when using three cores. 
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Fig. 8. Application speedup using all processors in a node. 

The applications are ordered in terms of their observed speedup in Figure 8. The 
applications with best scaling behavior on all nodes are VHl, SPaSM and Sweep3D 
(Figures 8(a)-8(c)). Both VHl and SPaSM are compute bound, and Sweep3D has 



466 K. J. Barker et al. 

a small memory footprint resulting in high cache utilization. In contrast SAGE and 
Partisn are memory bound and show the lowest scalability in all cases. 

In order to compare the speedup for each application across nodes, as shown 
in Figure 8, one must recall that the Nehalem node contains 8 cores whereas the 
Barcelona and Tigerton nodes each contain 16 cores. The Nehalem actually achieves 
a speedup of over six on five of the applications, but achieves a lower speedup on 
the memory intensive applications SAGE and Partisn. Indeed the Nehalem achieves 
a higher speedup than Tigerton on five of the applications even though Tigerton 
contains twice as many cores. The speedup on Barcelona is also good, achieving 
over l l x on five of the applications. 

A summary of the best speedup achieved on each node for all applications is 
shown in Table 3. Also included in Table 3 is the efficiency—the percentage of 
the maximum speedup that is achieved—in each case. The Nehalem node achieves 
higher efficiency than the Barcelona node which in turn achieves higher efficiency 
that the Tigerton node in all cases. 

Note that even if an application has a higher speedup on one node in comparison 
to another node it does not necessarily mean that it has a higher performance, as 
was evident from Figure 6(b). 

Table 3. Summary of application speedup and efficiency on a Nehalem, Barcelona, and Tigerton node. 

SPaSM 
VH1 
GTC 
VPIC 
Sweep3D 
SAGE 
Partisn 

Nehalem 
Speedup 
(max=8) 

7\5 
7.4 
7.4 
6.6 
6.5 
4.7 
3.8 

Efficiency 

(%) 
94 
93 
93 
82 
82 
59 
47 

Barcelona 
Speedup 

(max=16) 
133 
13.9 
8.3 
11.2 
12.4 
6.9 
5.9 

Efficiency 
(%) 
82 
87 
71 
70 
78 
43 
37 

Tigerton 
Speedup Efficiency 

(max=16) (%) 
10.5 66 
6.3 39 
6.5 41 
4.5 28 
10.1 63 
3.0 19 
3.2 20 

6. Nehalem Performance Optimizations 

There are several features of Nehalem that may be used to further improve appli­
cation performance over that presented in Section 5. These include 

• Simultaneous Multithreading - A Nehalem processor core can operate in 
a Simultaneous Multithreading (SMT) mode in which two threads execute on 
each processor. This is to hide latencies to memory: when one thread stalls on 
a memory access, the other thread can in principle use these wasted cycles. 

• Compiler Optimizations - Enhancements are expected in the Intel com­
piler to take advantage of many of the micro-architectural features of Nehalem. 
The current version of the Intel compiler that was used in this study did not 
implement any specific optimizations for Nehalem. 

• Turbo mode - A frequency stepping mode that can be enabled in the BIOS 
enables the processor frequency to be stepped up by up to four frequency incre-
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ments of 100MHz each. The up-stepping occurs when the thermal characteristics 
of the processor allows it. This could be useful when there is load imbalance 
between cores, allowing the most heavily loaded core to be sped up when other 
cores are idle. Turbo mode was not enabled in this study. 

The use of SMT was analyzed for the seven applications previously discussed. 
The performance improvements observed with and without the use of SMT is shown 
in Figure 9 when using a single processor, and both processors, in a node. As shown, 
about half of the applications benefit from the use of SMT, and half do not. Indeed, 
a very impressive 52% performance improvement was observed when using SMT for 
SPaSM, 22% for VPIC, and 10% for GTC. The worst decrease in performance was 
-4% for Sweep3D and for SAGE. 

; 

; 

; 

1 • 1-processor 

J •2-processors 

n_ n . 
LP' 

GTC Partisn SAGE SPaSM Sweep3D VH1 VPIC 

Fig. 9. Observed improvements in application performance when using SMT on Nehalem 

SMT is a BIOS option that is set at boot time. For applications that can take 
advantage of SMT the performance gains can be substantial. However it can slow 
down some applications and hence its use should be carefully determined based on 
the applications being used. Further analysis is required to characterize applications 
that can take advantage of SMT, and also to determine if applications can be 
optimized to take advantage of SMT. 

7. Conclusions 

In this work we have presented a performance evaluation of the latest, second-
generation Intel quad-core processor, Nehalem, that will form the basis of Intel's 
mainstream multi-core processors for a number of years. This processor is the first 
Intel processor to incorporate QuickPath Interconnect for inter-processor communi­
cations, and an integral memory controller supporting three DDR3 memory chan­
nels. The performance of Nehalem was contrasted against first-generation quad-core 
processors from both AMD and Intel, Barcelona and Tigerton respectively. 
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Data was obtained using microbenchmarks and a suite of scientific applications. 
A strict measurement methodology that used a shim to control the mapping of 
application processes to processors, and compared the per-core performance as well 
as scaling up to using all cores in a node. The process followed is directly applicable 
to other multi-core studies. 

When considering the performance of a single core, where there was no memory 
contention, a Nehalem core achieved a performance almost three times higher than 
a Barcelona core for the most memory intensive codes. A minimum performance 
advantage of 1.6x was observed on a cache-resident code, which corresponds closely 
to the ratio of the clock speeds of Nehalem and Barcelona. When using all of the 
cores in a processor the results are more dependent on the way each application 
uses memory. Nehalem enjoys a performance advantage of between 1.9x and 3.2x 
over Barcelona for all but the cache-resident code. 

Finally, when examining scaling across the entire node, the results again show 
significant performance advantages over both the Barcelona node and Tigerton 
node. Indeed, for the most memory intensive codes the performance of Nehalem 
is almost a factor of two greater than Barcelona's, and up to a factor of three higher 
than Tigerton's. This is even more significant when considering the Nehalem node 
contained only two processors (8 cores) whereas both the Barcelona and Tigerton 
each contained four processors (16 cores). Further optimizations are also possible 
on Nehalem, including the use of Simultaneous Multithreading which can improve 
application performance by up to 50%. 

While this study represents a snapshot of current processors and node archi­
tectures, it also represents a snapshot of current application structures. All of the 
applications we ran use the one MPI rank per core model. Although this is an ex­
tremely portable way to structure an application, it may be possible to gain more 
performance by exploiting the properties of multi-core processors, such as physically 
proximate processes sharing cached data. We have shown that for applications as 
they exist today it is important to consider the balance between compute rate and 
memory rate when selecting a processor from which to build a cluster. 
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