
Parallel Processing Letters, Vol. 18, No. 4 (2008) 453-469 %%&*
© World Scientific Publishing Company Y I P ^ 0 r l d , ^ C i e ^ t i f i c

www.worldscientific.com

A PERFORMANCE EVALUATION OF THE NEHALEM
QUAD-CORE PROCESSOR FOR SCIENTIFIC COMPUTING

KEVIN J. BARKER, KEI DAVIS, ADOLFY HOISIE, DARREN J. KERBYSON, MIKE
LANG, SCOTT PAKIN, JOSE CARLOS SANCHO

Performance and Architecture Lab (PAL), Los Alamos National Laboratory, Los Alamos, New
Mexico 87545, USA

Received June 27, 2008
Revised August 22, 2008

Communicated by Guest Editors

ABSTRACT

In this work we present an initial performance evaluation of Intel's latest, second-
generation quad-core processor, Nehalem, and provide a comparison to first-generation
AMD and Intel quad-core processors Barcelona and Tigerton. Nehalem is the first In­
tel processor to implement a NUMA architecture incorporating QuickPath Interconnect
for interconnecting processors within a node, and the first to incorporate an integrated
memory controller. We evaluate the suitability of these processors in quad-socket com­
pute nodes as building blocks for large-scale scientific computing clusters. Our analysis of
intra-processor and intra-node scalability of microbenchmarks, and a range of large-scale
scientific applications, indicates that quad-core processors can deliver an improvement in
performance of up to 4x over a single core depending on the workload being processed.
However, scalability can be less when considering a full node. We show that Nehalem
outperforms Barcelona on memory-intensive codes by a factor of two for a Nehalem node
with 8 cores and a Barcelona node containing 16 cores. Further optimizations are pos­
sible with Nehalem, including the use of Simultaneous Multithreading, which improves
the performance of some applications by up to 50%.

Keywords: Performance Analysis, Multi-core, Scientific Applications

1. Introduction

The advancing level of transistor integration is producing increasingly complex pro­
cessor solutions ranging from mainstream multi-cores, heterogeneous many-cores,
to special purpose processors (e.g. GPUs). There is no doubt that this will continue
into the future until Moore's Law can no longer be satisfied. This increasing inte­
gration will require improvements in performance of the memory hierarchy to feed
the processors. Innovations such as putting memory on top of processors, putting
processors on top of memory (PIMS), or a combination of both may be a future di­
rection forward. However, the utility of future processor generations will be a result
of demonstrable increases in achievable performance from real workloads.

453

http://www.worldscientific.com

454 K. J. Barker et al.

In this work we examine the performance of the latest, second-generation quad-
core processor from Intel, the quad-core Core i7 (Nehalem-EP). We compare its
performance to that of two first-generation quad-core processors, the AMD Opteron
8350 (Barcelona) and the Intel Xeon X7350 (Tigerton). Nehalem is implemented
using a 45nm fabrication technology and represents an advance in terms of a single
Moore's Law cycle from the 65nm process used for both Barcelona and Tigerton.

The performance of three nodes, one containing two Nehalem processors (8
cores), one containing four Barcelona processors (16 cores), and one containing four
Tigerton processors (16 cores) are compared. Our analysis relies on performance
measurements of application-independent tests (microbenchmarks) and a suite of
scientific applications taken from existing workloads within the U.S. Department
of Energy that represent various scientific domains and program structures. These
processors and the nodes built around them are of particular interest because they
implement explicit parallelism at multiple levels: within core (Nehalem), within
processor, and within node. These processors represent the first and second genera­
tions of competing quad-core technologies and are or will be the building blocks of
large-scale parallel computers.

The performance and scaling behavior of each application was measured on one
core, when scaling from one to four cores on a single processor, and when using all
processors in a node. In addition, we determined the best achievable performance
of each application on each node, which is not necessarily when using all processing
cores within a socket, or all cores within a node. This is heavily dependent on
the application characteristics. Though much of our work is focused on large-scale
system performance, including that of the largest systems available such as Blue
Gene/L and Blue Gene/P, ASC Purple, ASC Redstorm [1] and Roadrunner [2], we
note that the performance at large scale is a function of both the performance of
the computational nodes as well as their integration into the system as whole.

This paper is organized as follows. An overview of the Barcelona, Tigerton, and
Nehalem nodes is given in Section 2. Low-level microbenchmarks are described in
Section 3, together with measured results from each node. Section 4 describes the
suite of applications, the input decks used, and the methodology used to undertake
the scalability analysis. Results are presented in Section 5 for the three types of
analysis as described. Further possible optimizations on Nehalem are discussed in
Section 6. Conclusions from this work are discussed in Section 7.

The contribution of this work is in the analysis of empirical performance data
from a suite of complete scientific applications on the latest Intel Nehalem processor
and first-generation quad-core processors from both AMD and Intel. These data are
obtained from a strict measurement methodology to ensure that conclusions drawn
from the scalability analysis are fair. Note that in this present work we do not
consider physical or economic issues such as hardware cost, power consumption, or
physical node size. The process that we follow is directly applicable to other multi-
core studies. This work builds on the comparative analysis between Barcelona and
Tigerton previously published [3].

Performance Evaluation of the Nehalem Quad-Core Processor 455

2. Processor and Node Descriptions

Here we give an overview of the Intel Nehalem, AMD Barcelona, and Intel Tigerton
quad-core processors. Barcelona and Tigerton represent competing first-generation
quad-core processor designs first available in September 2007, whereas Nehalem is a
second-generation quad-core processor expected to be available in November 2008.
All three are detailed below and illustrate quite different implementations both in
terms of processor configuration and connectivity to memory.

2.1. The Intel Nehalem quad-core Xeon processor

Nehalem will form the basis of a range of 64-bit processors over the next few years
under the brand name Intel Core i7. The Nehalem-EP is a first in this family and
uses 45nm fabrication. It has four cores each with 64KB LI cache (32KB data +
32KB instruction)and 256KB L2 cache, and an 8MB shared L3 cache. The on-
chip memory controller supports three DDR3 memory channels. In addition, two
QuickPath Interconnect (QPI) channels allow two processors to be interconnected,
effectively implementing a non-uniform memory access (NUMA) architecture, as
well providing I/O connectivity. A further development expected in 2009 is the
Nehalem-EX that will contain an increased number of cores—6 or 8 per processor,
an increased number of QPI channels, and a larger L3 cache. The Nehalem-EP is
depicted in Figure 1(a), and a two-processor node is depicted in Figure 1(b).

Our performance analysis is of a pre-production Nehalem node. We expect pro­
duction hardware to achieve a similar level of performance. The node consisted of
two processors clocked at 2.8GHz. Each processor core can issue 4 double-precision
floating-point operations per clock resulting a peak performance of 44.8Gflops/s
per chip. The processors were connected via a single QPI with a peak link transfer
speed of 6.4GT/s, where a single transfer consists of 2B per direction. The node
contained three DDR3 1333MHz memories per processor for a total of 24GB.

The Nehalem also has the capability of Simultaneous Multi-Threading (SMT)
with two threads per core [4]. Its aim is to hide memory latencies by switching
between the hardware threads on memory stalls. SMT can significantly improve
application performance, as we show in Section 6 and should not be considered
similar to Intel's previous Hyper-Threading.

2.2. The AMD Barcelona quad-core Opteron processor

Barcelona, the latest generation of the Opteron, combines four Opteron cores onto a
single die as shown in Figure 1(c), using 65nm fabrication, with a process shrink to
45nm expected in late 2008. Each die contains a single integrated memory controller
and uses a HyperTransport (HT) network for point-to-point connections between
processors [5]. Each core has a private 64KB LI cache (32KB data -h 32KB in­
struction) and a private 512KB L2 cache, and each processor has a shared 2MB
L3 cache. The shared L3 cache is new to the Opteron architecture as are 128-bit

456 K. J. Barker et al.

SSE4a instructions enabling each core to issue 4 double-precision floating-point op­
erations per clock. The clock speed of each core is 2.0GHz giving each chip a peak
performance of 32Gflops/s.

Each node contains four quad-core processors as shown in Figure 1(d). DDR2
667MHz memory is used and thus the memory bandwidth per processor is 10.7GB/s.
The total memory capacity of the node is 16GB (4GB per processor). The HT links
connect the four processors in a 2 x 2 mesh, and effectively implement a NUMA
architecture. Further HT links provide PCI Express I/O capability. Each HT link
has a theoretical peak of 8GB/s for data transfer.

2.3. The Intel Tigerton quad-core processor

The Intel Tigerton processor [6] contains two dual-core dies, using 65nm fabrication,
that are packaged into a single dual-chip module (DCM) that is seated within a
single socket as shown in Figure 1(e). Each core contains a private 64KB LI cache
(32KB data + 32KB instruction), while the two cores on each die share a 4MB L2
cache for a total of 8MB L2 cache within the DCM. The processor implements the
128-bit SSE3 instruction set for SIMD operations and thus can perform 4 double-
precision floating-point operations per cycle. The processor is clocked at 2.93GHz
so the DCM has a theoretical peak performance of 46.9 Gflops/s.

Each node contains four processors for a total of 16 cores as shown in Fig­
ure 1(f), and contains a total of 16GB of main memory using fully-buffered DIMMs
(FBDIMMs). Central to the node is a single memory controller hub (MCH). This
hub interconnects the front side bus (FSB) of each processor to four FBDIMM
memory channels. Unlike the NUMA configuration of its successor Nehalem (and of
Barcelona), Tigerton is a symmetric multiprocessor (SMP) configuration. The MCH
contains a 64MB snoop buffer and a Dedicated High Speed Interconnect (DHSI)
as well as PCI Express channels. The purpose of the snoop buffer is to minimize
main memory accesses, while the DHSI provides a point-to-point link between each
processor and the memory channels. The FSB of each processor runs at 1066MHz.
The memory speed is 667MHz and thus provides a peak memory bandwidth of
10.7GB/s per processor that is shared by the four cores.

Table 1. Characteristics of the quad-core processors, memory, and node organization.

Nehalem
Barcelona
Tigerton

Speed
GHz
2.8
2.0
2.93

Processor
Peak

Gflops
44.8
32

46.9

LI
KB
64
64
64

L2
MB
0.25
0.25

4

L3
MB

8
2
-

Memory
Type Speed

MHz
DDR3 1333
DDR2 667

FBDIMM 667

Node
Memory

controllers
2
4
1

Peak
Gflops

89.6
128.0
187.6

A summary of the three processor architectures and nodes is presented in Ta­
ble 1. The peak performance of each processor, and each node configuration is shown
as well as characteristics of the memory hierarchy. Note that the L2 cache is shared

Performance Evaluation of the Nehalem Quad-Core Processor 457

Core

L2

Core Core

Shared L3
i d
Cross-bar

QPI (x2) Mem Cont r r TTT
DDR3 1333

Processor 0 Processor 1

6.4GT/S

DDR3 1333

(a) Nehalem quad-core
processor

(b) Nehalem dual-processor node

Core

L2

Shared L3
I tz

Core

HT (x3) Mem Cont

TTT^T

Processor 0 Processor 1

DDR2 667

8GB/S

8GB/S

8GB/S

DDR2 667

8GB/S

DDR2 667 Processor 2 Processor 3 DDR2 667

(c) Barcelona quad-core
processor

(d) Barcelona quad-processor node

Core Core

Shared L2

Core Core

Shared L2

t_

1066MHz FSB

Processor 0

C
0

c
8

c
1

C
9

Processor 1

C
2

c
10

C
3

C
11

8GB/S

B BESS

Processor 2

C
4

C
12

C
5

C
13

Memory Controller
Hub (MCH)

sffil/s 8 (^ 1 ^
i

S I

Processor 3

C
6

C
14

C
7

C
15

SGB/s

•

FBDIMM667 FBDIMM 667 FBDIMM 667 FBDIMM 667

(f) Tigerton quad-processor node (e) Tigerton quad-core
processor

Fig. 1. Overview of the Nehalem, Barcelona and Tigerton Quad-core processors

458 K. J. Barker et al.

across the two cores on each die in Tigerton, and that the L3 cache is shared across
the four cores on Nehalem and Barcelona.

3. Low-level performance characteristics

3.1. Memory bandwidth

To measure the memory bandwidth per core we ran the MPI version of the Uni­
versity of Virginia's Streams benchmark [7]. This benchmark is a memory stress
test for a number of different operations. We report here the performance of the
triad test. In Figure 2(a) the aggregate memory bandwidth is shown for Nehalem,
Barcelona, and Tigerton nodes for two cases: using a single processor and using all
processors in the node. The number of cores per processor used in both cases is
varied from one to four. In all cases the Nehalem node significantly outperforms the
Barcelona node which in turn outperforms the Tigerton node. The measured single-
core memory bandwidths are 12.1GB/s on Nehalem, 4.4GB/s on Barcelona, and
3.7GB/s on Tigerton. The aggregate memory bandwidths are 35.8GB/s, 17.4GB/s,
and 10.2GB/s, respectively. Note that the aggregate bandwidth is achieved from
two processors (8 cores) on the Nehalem node, compared to four processors (16
cores) on the Barcelona and Tigerton nodes.

Figure 2(b) is based on the same data as Figure 2(a) but presents the observed
memory bandwidth per core. As shown, the per-core bandwidth decreases from
12GB/s (one core per socket) to 4.6GB/s (four cores per socket) for Nehalem (a
factor of 2.6 decrease), 4.4GB/s to l . lGB/s for Barcelona (a factor of 4.0 decrease),
and from 3.7GB/s to 0.63GB/s for Tigerton (a factor of 5.9 decrease). These de­
creases are significant: the aggregate achievable memory bandwidth is important to
memory-intensive applications, but the Nehalem node has a clear advantage over
both Barcelona and Tigerton in these cases.

40 -, , 16

1 2 3 4 1 2 3 4
Cores Per Processor Cores Per Processor

(a) Aggregate memory bandwidth (b) Memory bandwidth per core

Fig. 2. Streams Memory Bandwidth.

Performance Evaluation of the Nehalem Quad-Core Processor 459

3.2. Processor locality

The mapping of application processes to cores within a node affects the memory
contention that the application induces. In our experience, the task-to-core ordering
is not always obvious and should at a minimum be verified. Linux determines core
numbering via information provided by the BIOS.

In this testing we used an MPI benchmark to measure the latency between
each core and all of the others. The latency varies depending on whether the two
communicating cores are on the same die, on different dies in the same processor
(in the case of Tigerton), or different processors (or single- or multiple-hop remote
processors for Barcelona). Note for comparison we show the latency between threads
for the Nehalem node which implements a total of 16 threads using SMT.

Destination core
2 3 4 5 8 7 8 9 101112-31^6

o

-* K

w
CO *
O o.

O ~.i

zr o
CD ©
S3 Zl

<2

&* en

Destination thre
0 1 2 3 4 5 6 7 8 0 i(M1<

Mj; L i
i # ; I M | ; N

TXAJX

jZLiX
stui v t t r fwT i x i t 1Q4I nTx -.I h M M

M H : | I
! j M JHf j
I j M i l *
l |44±3L 34X04X1
l ann j^ iC jJMiaJXi,
Ixmitt : n i M j j ± T T t l i ^ M
tqli prt
S Q T M ^ T ^

flirrnT+"

ad
2131415

PLI * 1 Pu 1 rm

W i M 1W

0 | V j |

^ HMX CO

00 *•
O Ol
c 05

0 -J

0 °
CD §

r-C

c3
£
cK I

"* ' I
ZOM
" T t

_̂l

|
1

;

I

4~«

i

.L,

4 ^ T j f ^
M M

T t l T

! j
1
M
i 1
ILJ T j

M i
ZLJ
J*, i

Destination core
0 1 2 3 4 5 6 7 8 9 '.011 121314th

!>4 I M I I | i j I I I I I I
|..M.J |! | Hrtj M M
• f ~ f ^ 4 ^ ^ H

Jxu&i^^ M i ^ f W . r f i ^ f ^ i , ±i±± iMJiLi 4- HWJ UTi : frfcfyf-i ! fU • j M i mi ; • n
RJ i : M 4 j M M nssy M M N I i i
i M(LJ i M M n M M
. rmj h W h I naM M M"<M

 !

UjA^^UAjT^n
M T l T o l ^YTTffm

• 0-78~0.80i.is (same core}

ED 0.85-1.00ns {same processor}

• 1.25-1 -42us (remote processor)

• 1.20-1.21 JJS (same die/processor)

D 1.47-1,49|is (H11-hop)

• 1.55-1.56|iS (HT 2-hops)

• 0.43-0.44ps (same die)

CI 0.84-0.85us (same processor)

D 1.63-1.64iis (remote processor)

(a) Nehalem (b) Barcelona (c) Tigerton

Fig. 3. Observed MPI latency from any core to any other core in a node.

From our latency measurements we were able to determine the arrangement
of the cores as seen by an application. Figure 3 shows the observed latency from
this test in the form of a matrix. The vertical axis indicates the sending core (or
thread) and the horizontal axis is the receiving core (or thread). Shading is used to
denote the different latencies. No test was performed for a core sending to itself (the
major diagonal in the matrix). The Barcelona node uses a linear ordering of cores
to processors, that is, the first four cores reside on the first processor as indicated
by the lowest latency, blocks of size 4x4 cores in Figure 4(b), and so on. In both the
Tigerton and Nehalem nodes a round-robin ordering across dies is used. Cores on
the same die are an MPI logical task distance of eight apart, as shown by the black
diagonal lines in Figure 4(c). As shown in Figure 4(a), in the case of Nehalem, even
threads are mapped to a one processor, and odd threads are mapped to the other
processor.

The latency from one core to another is in very distinct ranges depending on
their relationship (same die, remote die, etc.). We observe that the maximum latency

http://0-78~0.80i.is

460 K. J. Barker et al.

is similar on all nodes, but Nehalem and Tigerton enjoy a much lower intra-die
and intra-processor latency. The core and processor ordering was actually shown in
Figure 1 based on the observed processor locality map shown in Figure 3. To handle
the differences in the processor numbering between the nodes we implemented a
small software shim that uses the Linux schedsetaffinity() system call to allow
user-defined mappings between MPI rank and physical cores. This shim gave us
the ability to map processes to cores identically across the three nodes and thereby
perform fair comparisons of application performance.

4. Application testing process

Our application suite includes several large-scale production applications that are
currently used within the U.S. Department of Energy. The testing for each applica­
tion consisted of

(1) comparing the performance on a single core of the Nehalem, Barcelona and
Tigerton;

(2) examining the scaling behavior for two cases: (a) using only one processor, and
(b) using all processors in a node;

(3) determining the configuration (processors, and cores per processor) that yields
the best performance.

All of the applications are typically run in a weak-scaling mode. That is, the
global problem size grows with the number of nodes in the system. All available
memory is typically used for increased fidelity in the physical simulations or for
simulating larger physical systems. Our approach mimics typical usage by fixing the
sub-problem per processor regardless how many cores per processor are used. The
global problem grows in proportion to the number of processors used. This may be
stated succinctly as doing strong scaling within a processor and weak scaling across
processors.

4 .1 . The application suite

An overview of each application is given below. Each is typically run on high-
performance parallel systems using many thousands of processors at a time. A
summary of the application input decks used is given in Table 2. The input decks
are typical for problems processed on large-scale systems. Also indicated in Table 2
is the main processing characteristic of each application, for example, whether an
application is compute intensive, memory intensive, or both.

• GTC - Gyrokinetic Toroidal Code is a Particle-in-Cell (PIC) code from Prince­
ton [8]. It was developed to study energy transport in fusion devices.

• Partisn - SN transport code from Los Alamos solving the Boltzmann equation
using the discrete ordinates method, on structured meshes [9].

Performance Evaluation of the Nehalem Quad-Core Processor 461

• SAGE - an adaptive mesh (AMR) hydrodynamics code used for the simulation
of shock waves. Developed jointly by Los Alamos and SAIC [10].

• SPaSM - the Scalable Parallel Short-range Molecular dynamics code from Los
Alamos. Used to study material fracture and deformation properties [11].

• Sweep3D - a code-kernel from Los Alamos that implements deterministic SN
transport [12, 13]. The computation is in the form of wavefronts that originate
at the corners of a 3-D physical space.

• VH1 - the Virginia Hydrodynamics code simulates an ideal inviscid compress­
ible flow of gas hydrodynamics and is capable of simulating three-dimensional
turbulent stellar flows [14].

• VPIC - a Particle-In-Cell code from Los Alamos used to model particle flow
within a plasma [15].

Table 2. Summary of the input decks used for each application.

GTC
Partisn
SAGE
SPaSM
Sweep3D
VH1
VPIC

Input deck

ID wedge
Pencil

t imingJi
BCC

Pencil
ShockTube
3D-HOT

Problem per
processor

6.2M particles
20x10x400
140K cells
64x64x64

20x10x400
200x200x200
4M particles

Memory per
processor

320MB
80MB

280MB
150MB
8MB

900MB
256MB

Processing
characteristic
Particle based

Memory / Compute
Memory
Compute

Kernel, small memory
Memory / Compute

SSE, memory

5. Application Performance Analysis

5.1. Single-core performance comparison

The performance of each application on a single core of each of the three processors
is shown in Figure 4(a). The metric time denotes the iteration time of the main
computational loop (without I/O) for all applications except Sweep and Partisn,
for which it is 10 iterations, and VPIC, for which it is 100 iterations, to aid visual
comparison. The relative runtime, between the Nehalem and Barcelona, and be­
tween the Nehalem and Tigerton, is shown in Figure 4(b). A value of one indicates
the same performance between two processors, and a value of two indicates a 2x
performance advantage of Nehalem.

As shown, a Nehalem core is between 1.1 and 1.8 times faster than a Tigerton
core, and between 1.6 and 2.9 times faster than a Barcelona core, for the applications
tested. Note that the clock speed advantage of Nehalem over Barcelona is a factor of
1.4 indicating that the performance advantage arises in part from the core design and
from the faster memory subsystem. Also note that the Nehalem has a slower clock
speed than Tigerton, but achieves a higher level of performance for all applications
again due to improvements in the core design and the memory subsystem.

462 K. J. Barker et al.

40

35

30

25

' 20

15 4

10 \

5 4

0

D Barcelona (2.0GHz)

Q Tigerton (2.93GHz)

• Nehalem (2.8GHz)

E
£ 2.5

] n Nehalem vs. Barcelona]

J : • Nehalem vs. Tigerton L

EI I —r~b~ Li r~

(a) Application iteration time (b) Performance advantage of Nehalem

Fig. 4. Single-core performance comparison.

5.2. Single-processor performance comparison

The performance of each application on a single processor is shown in Figure 5(a).
The basis for this comparison is the same as that used in single core comparison.
The relative runtimes between Nehalem and Barcelona, and between Nehalem and
Tigerton, is shown in Figure 5(b).

As shown, the Nehalem processor achieves performance between 1.4 and 3.6
times higher than a Tigerton processor and between 1.5 and 3.3 times faster than
a Barcelona processor. Thus the scaling behavior of the applications on both the
Nehalem and Barcelona processors seem similar when comparing Figures 4(b) and
5(b), whereas the scaling behavior is significantly worse on Tigerton. This lack of
scaling on Tigerton can be attributed in part to the poorer performance of the
memory subsystem.

5.3. Node performance comparison

The best performance achieved for each application on the Nehalem node (8 cores),
the Tigerton node (16 cores), and the Barcelona node (16 cores) is shown in Figure 6.
Note that only relative performance is considered here. The relative performance
was calculated using the effective processing rate for each application since the core
count and hence the problem size for each application differed between the nodes.

Figure 6 shows that for five of the seven applications the Nehalem node (contain­
ing 8 cores) outperforms Tigerton node (containing 16 cores) and for six application
the Nehalem node outperforms the Barcelona node. For SAGE, the most memory
intensive application, the Nehalem node outperforms the Tigerton node by 3.0x and
the Barcelona node by 2.8x. The Nehalem node actually achieved a lower level of
performance on Sweep3D than the other two nodes, but was slightly higher per­
forming than Barcelona for SPaSM.

Performance Evaluation of the Nehalem Quad-Core Processor 463

• Barcelona (2.0GHz)

0 Tigerton (2.93GHz)

• Nehalem (2.8GHz)

(a) Application iteration time (b) Performance advantage of Nehalem

Fig. 5. Single-processor performance comparison.

Fig. 6. Nehalem performance advantage (Node)

The results shown in Figure 6 are in line with the differences in the memory
bandwidth measurements in Section 3.1. The node memory bandwidth on Nehalem
is 35.8GB/s, on Barcelona 17.4GB/s, and on Tigerton 10.2GB/s. The ratio of the
node memory bandwidths is very close to the ratio in the performance between the
nodes for SAGE. The memory footprint of Sweep3D is small and fits into cache on
all processors. Thus the performance advantage (or disadvantage at 0.84x) is close
to the ratio of the clock speeds (2.8GHz vs. 2.0GHz) multiplied by the ratio of the
number of cores in each node (8 vs. 16) = 0.7x. The remaining difference is due to
micro-architecture differences.

Note however that the performance presented above is based on the best ob­
served node performance, which does not necessarily result when using all 16 cores
in the node. In fact the best performance observed on VPIC and Partisn was when

464 K. J. Barker et al.

using two cores per processor (8 cores total), and for SAGE when using three cores
per processor (12 cores total) on the Tigerton node. The best performance in all
other cases was observed when using all cores in a node. This is illustrated in below
when analyzing the performance as a function of the number of cores and number
of processors used for each application.

5.4. Application scalability analysis

To analyze the performance of using multiple cores we followed a strict process
in which the problem size per processor was constant for all tests, as described in
Section 4. For each application we show the performance when using between one
and four cores per processor for the case of using one processor, shown in Figure
7, and all the processors in a node, shown in Figure 8. Note that the performance
relative to the single-core performance for each processor type is shown—this is the
speedup when using multiple cores. Note also that the legends for all graphs are
shown separately in Figure 7 and Figure 8.

4

o. 3

1 2
<D
Q.
0) !

0

B ^ 5 — -

2 3 4
Cores per Processor

(a) VH1

1 2 3 4
Cores per Processor

(b) SPaSM

• ^ 5

1 2 3 4
Cores per Processor

(c) Sweep3D

1 2 3 4
Cores per Processor

(d) GTC

2 3 4
Cores per Processor

(e) VPIC

1 2 3 4
Cores per Processor

(f) SAGE

Q. 3

i 2
a.

CO !

2 3 4
Cores per Processor

(g) Partisn

-Barcelona

-Tigerton

-Nehalem

Fig. 7. Application speedup on a single processor.

The scalability of five of the applications is very good on a single Nehalem and a
single Barcelona processor, as shown in Figure 7, achieving a speedup of over three

Performance Evaluation of the Nehalem Quad-Core Processor 465

out of a theoretical maximum of four when using all four cores. A lower speedup is
observed for the two more memory intensive codes SAGE and Partisn. Poor scaling
is observed on Tigerton for most of the applications. The performance when using
four cores is often not significantly higher than when using three cores.

2 3 4
Cores per Processor

(a) VHl

2 3
Cores per Processor

(b) SPaSM

2 3 4
Cores per Processor

(c) Sweep3D

1 2 3 4
Cores per Processor

(d) GTC

1 2 3
Cores per Processor

(e) VPIC

2 3 4
Cores per Processor

(f) SAGE

-a— Barcelona (4-processors

-x—Tigerton (4-processors)

-A—Nehalem (2-processors)

1 2 3 4
Cores per Processor

(g) Partisn

Fig. 8. Application speedup using all processors in a node.

The applications are ordered in terms of their observed speedup in Figure 8. The
applications with best scaling behavior on all nodes are VHl, SPaSM and Sweep3D
(Figures 8(a)-8(c)). Both VHl and SPaSM are compute bound, and Sweep3D has

466 K. J. Barker et al.

a small memory footprint resulting in high cache utilization. In contrast SAGE and
Partisn are memory bound and show the lowest scalability in all cases.

In order to compare the speedup for each application across nodes, as shown
in Figure 8, one must recall that the Nehalem node contains 8 cores whereas the
Barcelona and Tigerton nodes each contain 16 cores. The Nehalem actually achieves
a speedup of over six on five of the applications, but achieves a lower speedup on
the memory intensive applications SAGE and Partisn. Indeed the Nehalem achieves
a higher speedup than Tigerton on five of the applications even though Tigerton
contains twice as many cores. The speedup on Barcelona is also good, achieving
over l l x on five of the applications.

A summary of the best speedup achieved on each node for all applications is
shown in Table 3. Also included in Table 3 is the efficiency—the percentage of
the maximum speedup that is achieved—in each case. The Nehalem node achieves
higher efficiency than the Barcelona node which in turn achieves higher efficiency
that the Tigerton node in all cases.

Note that even if an application has a higher speedup on one node in comparison
to another node it does not necessarily mean that it has a higher performance, as
was evident from Figure 6(b).

Table 3. Summary of application speedup and efficiency on a Nehalem, Barcelona, and Tigerton node.

SPaSM
VH1
GTC
VPIC
Sweep3D
SAGE
Partisn

Nehalem
Speedup
(max=8)

7\5
7.4
7.4
6.6
6.5
4.7
3.8

Efficiency

(%)
94
93
93
82
82
59
47

Barcelona
Speedup

(max=16)
133
13.9
8.3
11.2
12.4
6.9
5.9

Efficiency
(%)
82
87
71
70
78
43
37

Tigerton
Speedup Efficiency

(max=16) (%)
10.5 66
6.3 39
6.5 41
4.5 28
10.1 63
3.0 19
3.2 20

6. Nehalem Performance Optimizations

There are several features of Nehalem that may be used to further improve appli­
cation performance over that presented in Section 5. These include

• Simultaneous Multithreading - A Nehalem processor core can operate in
a Simultaneous Multithreading (SMT) mode in which two threads execute on
each processor. This is to hide latencies to memory: when one thread stalls on
a memory access, the other thread can in principle use these wasted cycles.

• Compiler Optimizations - Enhancements are expected in the Intel com­
piler to take advantage of many of the micro-architectural features of Nehalem.
The current version of the Intel compiler that was used in this study did not
implement any specific optimizations for Nehalem.

• Turbo mode - A frequency stepping mode that can be enabled in the BIOS
enables the processor frequency to be stepped up by up to four frequency incre-

Performance Evaluation of the Nehalem Quad-Core Processor 467

ments of 100MHz each. The up-stepping occurs when the thermal characteristics
of the processor allows it. This could be useful when there is load imbalance
between cores, allowing the most heavily loaded core to be sped up when other
cores are idle. Turbo mode was not enabled in this study.

The use of SMT was analyzed for the seven applications previously discussed.
The performance improvements observed with and without the use of SMT is shown
in Figure 9 when using a single processor, and both processors, in a node. As shown,
about half of the applications benefit from the use of SMT, and half do not. Indeed,
a very impressive 52% performance improvement was observed when using SMT for
SPaSM, 22% for VPIC, and 10% for GTC. The worst decrease in performance was
-4% for Sweep3D and for SAGE.

;

;

;

1 • 1-processor

J •2-processors

n_ n .
LP'

GTC Partisn SAGE SPaSM Sweep3D VH1 VPIC

Fig. 9. Observed improvements in application performance when using SMT on Nehalem

SMT is a BIOS option that is set at boot time. For applications that can take
advantage of SMT the performance gains can be substantial. However it can slow
down some applications and hence its use should be carefully determined based on
the applications being used. Further analysis is required to characterize applications
that can take advantage of SMT, and also to determine if applications can be
optimized to take advantage of SMT.

7. Conclusions

In this work we have presented a performance evaluation of the latest, second-
generation Intel quad-core processor, Nehalem, that will form the basis of Intel's
mainstream multi-core processors for a number of years. This processor is the first
Intel processor to incorporate QuickPath Interconnect for inter-processor communi­
cations, and an integral memory controller supporting three DDR3 memory chan­
nels. The performance of Nehalem was contrasted against first-generation quad-core
processors from both AMD and Intel, Barcelona and Tigerton respectively.

468 K. J. Barker et al.

Data was obtained using microbenchmarks and a suite of scientific applications.
A strict measurement methodology that used a shim to control the mapping of
application processes to processors, and compared the per-core performance as well
as scaling up to using all cores in a node. The process followed is directly applicable
to other multi-core studies.

When considering the performance of a single core, where there was no memory
contention, a Nehalem core achieved a performance almost three times higher than
a Barcelona core for the most memory intensive codes. A minimum performance
advantage of 1.6x was observed on a cache-resident code, which corresponds closely
to the ratio of the clock speeds of Nehalem and Barcelona. When using all of the
cores in a processor the results are more dependent on the way each application
uses memory. Nehalem enjoys a performance advantage of between 1.9x and 3.2x
over Barcelona for all but the cache-resident code.

Finally, when examining scaling across the entire node, the results again show
significant performance advantages over both the Barcelona node and Tigerton
node. Indeed, for the most memory intensive codes the performance of Nehalem
is almost a factor of two greater than Barcelona's, and up to a factor of three higher
than Tigerton's. This is even more significant when considering the Nehalem node
contained only two processors (8 cores) whereas both the Barcelona and Tigerton
each contained four processors (16 cores). Further optimizations are also possible
on Nehalem, including the use of Simultaneous Multithreading which can improve
application performance by up to 50%.

While this study represents a snapshot of current processors and node archi­
tectures, it also represents a snapshot of current application structures. All of the
applications we ran use the one MPI rank per core model. Although this is an ex­
tremely portable way to structure an application, it may be possible to gain more
performance by exploiting the properties of multi-core processors, such as physically
proximate processes sharing cached data. We have shown that for applications as
they exist today it is important to consider the balance between compute rate and
memory rate when selecting a processor from which to build a cluster.

Acknowledgments

We thank Intel for providing early access to pre-production Nehalem nodes, and to
AMD for providing access to Barcelona nodes, for this performance evaluation. This
work was funded in part by the Accelerated Strategic Computing program and the
Office of Science of the Department of Energy. Los Alamos National Laboratory is
operated by Los Alamos National Security LLC for the US Department of Energy
under contract DE-AC52-06NA25396.

References

[1] A. Hoisie, G. Johnson, D.J. Kerbyson, M. Lang, and S. Pakin, A Performance Compar­
ison Through Benchmarking and Modeling of Three Supercomputers: Blue Gene/L,

Performance Evaluation of the Nehalem Quad-Core Processor 469

Read Storm and ASC Purple, in Proc. IEEE/ACM SuperComputing, Tampa, FL, Nov.
2006.

[2] K.J. Barker, K. Davis, A. Hoisie, D.J. Kerbyson, M. Lang, S. Pakin, J.C. Sancho,
Entering the Petaflop Era: The Architecture and Performance of Roadrunner, in Proc.
IEEE/ACM Super Computing, Austin, TX, Nov. 2008.

[3] K.J. Barker, K. Davis, A. Hoisie, D.J. Kerbyson, M. Lang, S. Pakin, J.C. Sancho,
Experiences in Scaling Scientific Applications on Current-generation Quad-core Pro­
cessors, in Proc. workshop on Large-Scale Parallel Processing (LSPP), Int. Parallel
and Distributed Processing Symposium (IPDPS), Miami, FL, Apr. 2008.

[4] Intel White Paper, First the Tick, Now the Tock: Next Generation Intel Microarchi­
tecture (Nehalem), Intel publication 0408/VP/HBD/PDF 319724-001US, Apr. 2008.

[5] AMD White Paper, Hyper Transport Technology I/O Link, A High-Bandwidth I/O
Architecture, Advanced Micro Devices, Inc., One AMD Place, Sunnyvale, CA 94088,
#25012A, July 20, 2001.

[6] Intel Corporation, Quad-core Intel Xeon Processor 7300 Series. Product Brief. 2007.
[7] J. McCalpin, Memory bandwidth and machine balance in current high performance

computers, in IEEE Comp. Soc. Tech. committee on Computer Architecture (TCCA)
Newsletter, Dec. 1995, 19-25.

[8] N. Wichmann, M. Adams, S. Ethier. New Advances in the Gyrokinetic Toriodal Code
and Their Impact on Performance on the Cray XT Series, in Proc. Cray User Group
(CUG), Seattle, WA, 2007.

[9] R.S. Baker, A Block Adaptive Mesh Refinement Algorithm for the Neutral Particle
Transport Equation, Nuclear Science & Engineering 141(1) (2002) 1-12.

[10] D.J. Kerbyson, H.J. Alme, A. Hoisie, F. Petrini, H.J. Wasserman, and M.L. Gittings,
Predictive Performance and Scalability Modeling of a Large-scale Application, in Proc.
IEEE/ACM Supercomputing, Denver, CO, Nov. 2001.

[11] S.J. Zhou, D.M. Beazley, P.S. Lomdahl, B.L. Holian, Large-scale molecular dynamics
simulations of fracture and deformation, J. of Computer-Aided Materials Design 3(1-3)
(1995) 183-186.

[12] K.R. Koch, R.S. Baker, R.E. Alcouffe, Solution of the First-Order Form of the 3-D
Discrete Ordinates Equation on a Massively Parallel Processor, Trans, of the American
Nuclear Soc. 65 (1992) 198-199.

[13] A. Hoisie, O. Lubeck, H.J. Wasserman, Performance and Scalability Analysis of
Teraflop-Scale Parallel Architectures using Multidimensional Wavefront Applications,
Int. J. of High Performance Computing Applications 14(4) (2000) 330-346.

[14] J.M. Blondin, VH-1 User's Guide. North Carolina State University, 1999.
[15] K. Bowers. Speed optimal implementation of a fully relativistic 3d particle push with

charge conserving current accumulation on modern processors, in Proc. 18th Int. Conf.
Numerical Simulation of Plasmas, 2003, 383.

