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Abstract— In parallel applications communication overheads
generally increase as the processor count increases and in par-
ticular, collective communication operations can become a critical
limiting factor in achieving high performance. In this paper we
explore a novel technique to boost application performance by
dedicating some processors in the system to collective operations.
We demonstrate the viability and efficiency of this approach for
the Allreduce collective operation on a state-of-the-art cluster.
Experimental results show that the collective latency can be
reduced by 30% and that the communication overhead per
processor is also very low, at 1.6μs, which represents one
order of magnitude higher performance than with conventional
implementations. Moreover, results on a large-scale scientific
application (POP) show that this approach achieves 15% higher
performance on 640 processors than when using the default
collective implementation.

I. INTRODUCTION

The single program multiple data (SPMD) programming

model is generally the preferred programming model in paral-

lel scientific applications as they usually exhibit a rich degree

of data-parallelism. In this model the global simulation domain

must be divided across the available processing elements

where similar operations are performed on different sub-grids

at the same time. Unfortunately, when running at large-scale

the communication costs can become a critical limiting factor

to achieve high performance. This is due to the communication

costs typically increasing in direct proportion to the processor

count. This is especially true with collective communication

operations such as the Allreduce primitive [1].

In scientific computing the Allreduce collective is heavily

used in solving a sparse system of linear equations in many

scientific applications [2]. The basic operation of this col-

lective consists of several communication and computation

steps to combine one or more values from every proces-

sor and distribute the result back to all processors. Some

high-performance cluster interconnection networks, such as

Quadrics QS-Net and InfiniBand, provide hardware support in

their network interface cards (NICs) for some collective oper-

ations in order to accelerate and offload the message handling

from the main processor. Offloading is important because it

allows for overlapping communication with other communica-

tion/computation activities of the application. However, up to

now the applicability of these network co-processors to carry

out collectives primitives has been very limited as they do not

perform floating point operations in hardware that are often

required.

Moreover, custom-designed supercomputers such as the

Blue Gene/L [3] and the Intel Paragon XP/S [4] machines

dedicate some of their processing elements to specifically

perform communication related operations. For example, in

the Blue Gene/L machine there is a mode of operation (known

as co-processor mode) in which a processor is paired with

another processor dedicated to handle it’s communication

tasks (collective and point-to-point). This mode of operation

is fully supported in hardware, and thus it is transparent

to the application requiring no changes to the conventional

SPMD programming model. This approach is more appealing

in large-scale systems as the use of a NIC may become a

major potential bottleneck for a node as the node size, in

terms of number of processing elements, increases due the

expected rapid expansion in number of cores per socket.

Enhancing network interface cards to reduce this congestion

is not a scalable solution as it will encounter power and PCI

bandwidth constraints. On the other hand, host processors have

the advantages of having a much faster processing capabilities,

a faster access to memory, and a higher proximity to other

processors within the node than their processor counterparts

in the NIC. Therefore, host processors are more suitable to

accelerate and offload communication operations. However

when using communication co-processors, the typical scheme

employed uses a fixed number of dedicated communication

processors (DCPs), and often takes a conservative approach

where the number of DCPs can be very large (for example,

half of the available processors in the Blue Gene/L machine)

which clearly has the disadvantage of reducing the capability

of the system for application processing.

In this paper, we explore a novel approach to increase

application performance in large-scale systems by efficiently

dedicating one or more processors in the system to perform

collective communications, and thus act as support to the

other processors running the application. The number of

dedicated collective processors in our approach that we term

CDCP (Configurable Dedicated Collective Processors) is con-

figurable to each application. The number of DCPs required

depends on the characteristics of the application which allows

us to drastically reduce the overhead of DCPs in the system

with respect to conventional approaches. Moreover, there is no
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additional hardware required to implement this approach as it

can be constructed using the standard MPI communication

library. Thus, providing portability and cost-effectiveness to

many systems.

This new approach is a substantial departure from the

SPMD programming model to the MPMD (multiple program

multiple data) as not all processors execute the same work-flow

of the application. This transformation to a MPMD is totally

transparent to the application that, from the point of view

of the programmer, it is still SPMD. We demonstrate in this

work that parallelizing the application work-flow in this way

significantly achieves better performance than the classical

SPMD parallelization of the application. In this research we

quantify the possible performance benefits and empirically

demonstrate the viability and efficiency of this scheme in

a current commodity large-scale cluster. The prototype im-

plementation focuses on the Allreduce collective. The results

show that the CDCP approach is able to significantly increase

the performance of the Allreduce – it’s latency can be reduced

by up to 30% on 512 processors. In addition, the CDCP

can effectively hide the communication costs of the collective

primitives with other communication/computation activities as

the overhead per processor of the CDCP approach is very low

at 1.6 μs, and the required time to fully hide the collective

costs is 3× lower than that required for other implementations.

Moreover, results from Parallel Ocean Program (POP) show

that the CDCP approach significantly increases its perfor-

mance by 15% with respect to the conventional SPMD scheme

when using the same number of processors. This indicates

that the CDCP approach is able to provide a more efficient

use of the computational resources in the system than the one

achieved by the SPMD model.

The rest of this paper is organized as follows. Section II

summarizes the most relevant previous work on improving the

performance of collectives. In Section III we briefly describe

the typical implementation of the Allreduce collective. Sec-

tion IV describes our non-blocking approach for collectives.

Section V describes the experimental results. And finally,

conclusions are given in Section VI.

II. RELATED WORK

There has been a lot of research focused on improving the

performance of collectives in the past due to their high impact

on application performance. We consider the most relevant

into the three sub-sections below.

– Collectives Assisted by NIC Processors The first col-

lectives offloaded to NICs were the Barrier and Broadcast
primitives [5]. They were implemented in Asynchronous

Transfer Mode (ATM) network adapters. The NIC was able

to significantly accelerate these operations because they are

not computation bound and the NIC was able to provide a

much faster response than the host processor. More recently

other research has explored the offloading of collectives in-

cluding Allreduce and Reduce [6], [7]. Integer and floating

point operations were evaluated for various collective data

sizes. Because the NIC didn’t have hardware floating point,

those operations were emulated using software libraries on

the embedded processors. Results showed that although this

scheme provides a better tolerance of the process skew, the

performance of these collectives were significantly worse than

their counterpart implementation in the host processors. The

major cause for the degradation was the slower speed of the

NIC processors with respect to the host processor that resulted

in slower floating point performance for those collectives. This

behavior is likely to also occur in current HPC networks as

the gap in performance between the NIC and host processors

remains high. We believe that this trend is likely to continue in

the future due to the restricted power of NICs and the limited

I/O bandwidth within a node.

In addition, there have been studies that improved collec-

tive performance by using Remote Direct Memory Access

(RDMA) that is available in most modern networks. Gupta

showed that collectives can take advantage of this feature

to significantly increase their performance [8]. Tipparaju [9]

and Wu [10] combined the RDMA capabilities with shared

memory support available within an SMP node to accelerate

collectives. All these techniques complement our own ap-

proach as they can be incorporated to improve the performance

for specific systems.

– Collectives Assisted by Dedicated Host Processors Two

machines that are representative of this scheme are the Intel

Paragon XP/S [4] and the Blue Gene/L [3]. In both machines

one or more of the host processors can be dedicated to carry

out the communication operations of the other’s. The Blue

Gene/L machine contains only two processors per node while

the number of processors per node in the Intel Paragon XP/S

varied from 2 to 5 depending on the machine. Thus, the ratio

between DCPs and application processors is between 1:1 and

1:4. Our approach also dedicates a set of processors to act

as communication processors. However, a main difference is

that the number of dedicated processors is flexible and can be

configured to the needs of each application.

– Non-blocking Collective Libraries Recently, a commu-

nication library was developed by Hoefler called NBC that

also provides support for non-blocking collectives [11]. Non-

blocking collectives are not in the MPI standard today, but

there are currently active discussions in the community to

decide whether it should be integrated into the standard or

not in the future. Preliminary results on the NBC library

showed that such a technique is a viable approach to improve

the performance of some scientific applications on small-scale

clusters encouraging the inclusion of non-blocking collectives

in the MPI standard. Our approach also provides support

for non-blocking collectives, but unlike the NBC scheme,

we don’t execute the application on the processors that the

collective operation is offloaded in order to maximize the

parallelism between collective operations and other application

communication/computation activities.
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Fig. 1. Conventional implementation of the Allreduce collective.
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Fig. 2. Non-blocking implementation of the Allreduce collective
(NBC library).

III. BACKGROUND

A. The Basic Allreduce Implementation

The Allreduce collective operation performs a calculation

(such as summation, maximum, or minimum) on data located

on each processor and then distributes the result back to every

processor. Various efficient algorithms consisting of a series

of computation and communication steps have been developed

to perform this operation. The most commonly used algorithm

employs a binomial tree because it has a regular structure, and

thus is easily implemented. This algorithm typically requires

a total of 2 × log(N) communication steps and log(N)
computation steps where N is the number of application

processors (assumed here to be a power of two for simplicity).

Generally, because the high performance of today’s processors,

the communication costs represent a greater proportion of

the overall collective cost. For illustration purposes, Figure 1

depicts the steps required on a 4-processor system using the

blocking MPI Send/Recv functions. Two binomial trees are

required to complete the communications: one to reduce the

data to a single root and a second to distribute the result. This

last distribution can be done in one communication operation

when the network has hardware support for data broadcast.

Also, note that there are dependencies between steps, for

example step 4 in Figure 1 cannot begin until step 3 completes.

B. The Non-blocking Allreduce Implementation

In general, collective operations allow applications to over-

lap communication with available computation through the use

of non-blocking send/receive functions provided by the mes-

sage passing library. Application performance can be benefited

as the processor wastes fewer cycles waiting to receive data

and therefore can perform application computation in advance

of, rather than after, the collective operation’s completion.

Figure 1 illustrates this approach. P1 initiates the receive

operation in step 2 although the data is not received until

step 6. During this elapsed time the processor is idle even

though it could perform useful computation. Note that a data

dependency analysis is required in order to ensure correctness

when overlapping in this manner.

The optimal amount of computation that can be scheduled

between the initiation of the receive operation and the arrival

of data is not obvious. It varies from one processor to another

and is unknown prior to execution. For instance, in Figure 1,

processor P0 can absorb less computation than processor P1.

Polling or interrupt based methods can be used to determine

the arrival of data and make progress on the collective.

The NBC library employs the polling mechanism because

generally provides more responsiveness than the interrupt

based methods. This is due to the fact that the operating

system is usually not responsive enough to deal with incoming

messages.

Figure 2 depicts the non-blocking Allreduce implementa-

tion for a 4-processor system in the NBC library. Although

processors are able to advance the application’s execution by

overlapping communication with available computation, the

execution of the collective is performed by the same processors

that are run the application and suffer the overheads associated
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with repeatedly sending and receiving messages, calculating

the reduction, and polling the MPI library.

IV. THE CDCP SCHEME

In this section, we describe our proposed technique for the

MPI Allreduce collective as well as its implementation.

A. Algorithm Description

The CDCP (Configurable Dedicated Collective Processors)

technique divides the processors into two sets in order to

execute an application: (1) the set of application processors,

referred to as APP where the main work-flow of the appli-

cation is executed, and (2) the set of (Dedicated Collective
Processors), refereed to as DCP that actually execute the

steps of the collective operations.

A mapping function assigns a unique DCP to each APP

processor, f : APP ⇒ DCP . The number of DCPs may

be one or more. When using more than one DCP, f is used

to distribute the DCPs evenly among the APPs in order to

reduce contention when multiple APPs simultaneously access

the DCPs.

Each application processor is involved in the following

operations:

• Send data to its corresponding DCP, and

• Receive data back from the same DCP.

In the case of a reduction collective, the operations under-

taken by each DCP are:

• Receive data from all the APPs assigned to it,

• Calculate the partial reduction on the data received,

• Communicate with other DCPs, if any, to complete the

reduction, and

• Distribute the result to the corresponding APPs.

Note that although this scheme can also be implemented

using threads eliminating the need for DCPs, we decided to

use processors rather than threads for performance purposes.

Processors provide more responsiveness, less overhead (no

context switching due to multi-threading), and also reduces the

load imbalance produced by the calculation of the collective

in the application processors.

In the CDCP scheme, two different processor distributions,

between APP and DCP could be considered. The first is to

assume that the application runs on N = APP processors

and additional processors would be used for the DCPs. The

second does not require additional processors in the system

and the DCPs are taken from the total processors used, i.e.

N = |APP |+|DCP |. This later mode is used in the following

analysis, that is the number of APP processors decreases as

the number of DCPs increases. In both distributions, the DCP
ratio is defined as the ratio between |DCP | and |APP |. It

represents the number of application processors assigned to

each DCP, and thus determines the level of contention that

a DCP will see — this is an important consideration that

impacts on the performance of the CDCP scheme as will be

seen later. There is an equivalence between the DCP ratio and

the total number of DCPs for a particular run and distribution

mode. For example, a DCP ratio of 1:4 on a 640-processor run

corresponds to |APP | = 640 and |DCP | = 160 in the case of

the first distribution mode, whereas in the second distribution

mode there would be 512 and 128 processors respectively.

Note that in the second mode the parallelism available to the

application is reduced from 640 to 512 processors in order to

accommodate the DCPs.

To illustrate the CDCP approach, Figure 3 depicts the steps

required for an Allreduce operation on the same number of

processors as shown in Figure 1 but the number of applica-

tion processors is reduced by one in order to accommodate

one DCP. The application processors initiate the collective

operation by sending data to the waiting DCP. Once the data

is transmitted, the application processors are able to advance

the computation until, at some point, they are required to

wait for the completion of the collective. Note that most of

the communication and computation required to calculate the

reduction have moved from the application processors to the

DCP. This minimizes the performance impact on the appli-

cation and maximizes the parallelism between the collective

operation and the application work-flow.

�� ����� ��

���	
�

���	
�

���	
�

��
�
����

��
�
����

���������
���	�������

�		��������
	��������

����

��
�����

�		��������
���	�������

�����

����

���
	��������

���� ����

Fig. 3. Steps required to complete the non-blocking implementation
of the Allreduce operation in the CDCP scheme using a 1:3 DCP
ratio.

Among the DCPs, collectives are completed in the tradi-

tional way. Operations performed by the application processors

are minimal, requiring only the initiation of the operation and

a final synchronization. Note that the number of steps required

to complete the Allreduce in the Figure 3 is reduced to half

the steps required in the traditional implementation (6 steps,

see Figure 1). The number of steps in the CDCP scheme is

given by

2 × log(|DCP |) + log(|DCP |) + 2

which corresponds to the steps required for the Allreduce
calculation among the DCPs and the two extra steps represent

the initiation and a final synchronization. It can be proved that

DCP ratios equal or larger than 1:2 reduce the number of steps

required compared to the traditional implementation.
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In principle, reducing the number of steps might be ben-

eficial to performance not only because of the reduction

of the communication/computation operations, but also for

a better tolerance to process skew due to the reduction in

communication operations. However, reducing the number of

steps implies that the DCP ratio is higher which in turn

increases the contention in the DCPs. This contention might be

high enough to offset the performance improvement achieved

via the reduction in the number of steps. Thus there is a

trade-off between the reduction in the number of steps and

the contention generated. There is an optimal DCP ratio that

reduces the number of steps that at the same time keeps the

contention low — this will be analyzed in Section V.

B. Implementation Description

Because MPI implements an SPMD model, one of the main

issues in its use for implementing collectives using CDCP is

in the separation of the APP and DCP processor groups.

A mechanism is therefore required to assign different tasks

to different processors at application launch time while still

allowing for communication between groups.

To implement this, we utilize the PMPI profiling interface

supported by the MPI message passing library [12]. PMPI can

be used to intercept all calls to the MPI library, allowing for

insertion of code that can be executed either before or after

an MPI call. These “wrapper” functions do not require any

modification of the application source code.

At job launch time, an identical executable image will begin

on all APP and DCP processors. At MPI initialization time,

a PMPI wrapper routine assigns processors to each group

based on information passed via environment variables. Two

MPI communicators are created, allowing for independent

communication between the APP and DCP groups. These

communicators are substituted for the original global commu-

nicator (MPI COMM WORLD) by PMPI wrapper routines,

and allow seamless communication between application pro-

cessors. This is fully transparent to the application and the

programmer too. Although, the underlying implementation

actually follows a MPMD programming model this is not

visible to the programmer, and thus from a programming point

of view, the application still follows the SPMD model.

The CDCP library provides two additional functions to

the MPI library named DCP IAllreduce and DCP Wait. The

former allows the application to initiate the non-blocking

Allreduce operation and the later is to synchronize with its

completion. The DCP IAllreduce is implemented using the

non-blocking send/receives (MPI ISend and MPI IRecv). The

synchronization routine is implemented using MPI Wait to

wait for the completion of the MPI IRecv and MPI ISend calls.

Moreover, in order to minimize the contention in accessing

multiple DCPs from multiple application processors in systems

using multi-processor nodes (and multi-core sockets), the

DCPs are physically distributed across the nodes in the system.

This distribution is illustrated in Figure 4 for an 8-processor

system where |APP | = 6 and |DCP = 2|. Note that when

a DCP occurs within a particular node, the other application

processors in that node are assigned to it in order to further

accelerate the collective.
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Fig. 4. Distribution of two DCPs across an 8-processor, 2-node
system.

V. EVALUATION

A. Experimental Set-up

The system used in evaluating the CDCP scheme is rep-

resentative of current high-performance computing platforms,

with a peak performance of 4 TFlops. The system contains

256 compute-nodes interconnected with a Voltaire 288-port

InfiniBand 4x SDR switch. Each node contains 2 sockets

that share a NIC. Each socket contains a dual-core 2.0GHz

AMD Opteron processor resulting with a total of 1,024 cores

in the system. At the time of writing this paper, 640 cores

were made available for this analysis. Both cores in a socket

share 2GB of main memory and each node has 4GB in total.

Although cores and processors are not the same concept–

cores must share main memory— in this paper we use the

terms processor and core interchangeably since a core can be

viewed as an independent processor in parallel programming.

Each node runs the Linux operating system (kernel 2.6.15.1,

SMP version). The MPI message passing library used was

MVAPICH-0.9.9-1168 [13]. The achievable inter-node latency

for small messages is 4 μs, and the uni-directional bandwidth

is 950 MB/s for large messages on this cluster.

We evaluated the performance of the Allreduce based on the

CDCP scheme and also for comparison purposes we evaluated

the blocking scheme provided by the MVAPICH library, and

the non-blocking scheme provided by the NBC library [11].

In order to better highlight the benefit of the CDCP scheme,

we designed microbenchmarks that allows us to easily explore

different parameters. Various collective sizes are considered in

this analysis ranging from 8 up to 1024 bytes. In particular,

the 8-byte size is typical in many scientific applications when

using the Allreduce collective operation [14]. A summation is

used in the Allreduce collective. The reported timing data are

averages over 1,000 iterations.

We also evaluated the CDCP scheme on a large-scale sci-

entific application, the Parallel Ocean Program (POP) version

2.0 [15]. This application has been also recently analyzed the
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doiterationsfor 

NBC_Test()flag=

doiterationsfor 

T comm1

T comp

T comm2

T comp

T comm1

doiterationsfor 

T comm1

T comp

T comm2

!flag ) do

NBC_IAllreduce()

while (

flag=0

computation_loop()

end for
end while

end for

computation_loop()

MPI_Allreduce()

end for

computation_loop()

DCP_Wait()

DCP_IAllreduce()

Blocking scheme NBC scheme CDCP scheme

Fig. 5. Microbenchmarks for the blocking, NBC, and CDCP schemes showing time measurements.

overlapping of the point-to-point communications operations

with available computation in [16]. POP is an ocean modeling

code that represents water regions as 3D regular grids. POP

belongs to the climate modeling applications that has been

identified as an increasingly important area for high perfor-

mance computing. This application runs in strong scaling

mode where the global problem size remains constant and the

spatial sub-grid size per processor decreases as the number of

processors increases. The problem x1 that consists of a global

problem size of 320× 384× 40 grid points was used. For this

evaluation we considered the second distribution mode for the

CDCP scheme. This is the worse case because the available

parallelism of the application is reduced.

B. Microbenchmarks

Figure 5 shows the pseudo-code of the microbenchmarks

used in the evaluation. These microbenchmarks allows us to

evaluate the behavior of the CDCP scheme in two different

scenarios: in applications that exhibit some available compu-

tation/communication that can be performed at the same time

as the collectives (i.e. with overlap), and in applications in

which there is no such overlap. When considering the overlap

case, some computation is placed between the initiation of

the collective and the final synchronization for the comple-

tion. Computation times ranging from 0 μs up to 200 μs are

considered in this case.

In these microbenchmarks we measure two important met-

rics: the collective latency and collective overhead. Both

metrics are defined as the summation of the times Tcomm1

and Tcomm2, but the collective latency is the time when there

is no computation available to overlap (Tcomp = 0). The

collective latency measures the total duration of the collective

which is important for applications that does not exhibit any

overlap. For those applications is important to reduce the

collective latency since they must wait for the completion of

the collective.

On the other hand, the collective overhead is relevant

for applications that exhibit some overlap. In this case, the

performance of the CDCP scheme is given by the collective

overhead. This overhead can be decreased when overlapping

the collective with some computation/communication activities

of the application. There is a lower bound in the collective

overhead as some communication costs cannot be overlapped

such as the overhead of calling to the MPI library. In these

evaluations we used the first distribution mode in the CDCP

scheme in which additional processors are required to accom-

modate the DCPs in order to compare the performance of the

collective in an equal job size with respect to the other schemes

evaluated.
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processor job and 8-byte collective).

C. Overlapping Computation

In this section, we examined the efficiency of the CDCP

scheme to overlap the communication costs of the collective

with computation. We compared the performance of the CDCP

scheme with the NBC scheme as it also allows for overlapping

communication with computation.

Figure 6 shows the collective overhead per processor for the

NBC and CDCP schemes for various computation times on a

512-processor system and using a DCP ratio of 1:4. As can

be seen, as the computation time is increased the collective

overhead gradually decreases in both schemes down to a
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lower-bound — the level at which no further communication

costs can be hidden. Two important observations can be made

in these results. First, the CDCP scheme achieves the lower

bound earlier than the NBC scheme. In particular, the CDCP

scheme achieves the lower bound at 48 μs while for the NBC

library the lower bound is reached at 122 μs. The cause for

this is the high overhead introduced at small computation

times in the NBC scheme due to the high frequency of the

polling that prevents it to quickly reduce the communication

costs. However, in the CDCP scheme there is no such polling,

and thus it can rapidly decrease the communication costs. The

improvement in the computation time by the CDCP scheme

is a factor of roughly 3×. Reducing the computation time is

important because at large-scale the amount of computation

available to be overlapped with the collective may be small,

and the CDCP scheme can effectively exploit that computation

to hide the communication costs. And the second observation

is that the lower bound reached by the CDCP scheme is

substantially lower than the one reached by the NBC scheme.

The lower bound for CDCP scheme is 1.6 μs while for the

NBC scheme is one order of magnitude higher, at 35 μs. Again,

the reason is due to the overhead of polling in the NBC scheme

— this is analyzed in more detail below.

D. Collective Overhead

Figure 7 shows the lower bound of the collective overhead

per processor for the blocking, NBC, and CDCP schemes for

various job sizes while considering a DCP ratio of 1:4. As can

be seen, the CDCP scheme consistently achieves the lowest

collective overhead regardless of the job size. In particular,

this overhead is 1.6 μs for a 8-processor job whereas the

collective overhead for the NBC and the blocking scheme

is 8.5 μs and 17 μs, respectively. Moreover, the collective

overhead does not varies significantly as the job size increases

unlike the NBC and blocking schemes. For these schemes

the overhead is increased by a factor of 4× and 3× on the

largest job size evaluated (512 processors). The reason for

this is because the blocking and the NBC schemes execute the

collective operation on the same processors that the application

uses and suffers all the overheads associated to complete the

collectives. This effect increases with the job size as described

in Section III. However, in the CDCP scheme most of these

operations have moved to the DCPs and the application

processors are uniquely suffering a constant overhead of the

initiation and a final synchronization which is independent of

the job size.
Moreover, the increase in the collective size does not affect

the relative performance of CDCP scheme with respect to

the other implementations as can be observed in Figure 8.

Although, the overhead of the CDCP scheme is increased up

to 2.9 μs on a 1024-byte collective size the performance of the

CDCP scheme is still one order of magnitude higher than the

other schemes.
Therefore, the greater scalability and lower overhead of

the CDCP scheme makes it more appropriate for large-scale

systems in order to efficiently exploit the potential overlap that

is often present in applications.

E. Collective Latency
Figure 9 shows the collective latency for the blocking, NBC,

and CDCP schemes for various job sizes while considering a

DCP ratio of 1:4. As it can be observed the CDCP scheme

achieves significantly lower latency. For instance, for a 512-

processor job a reduction of 30% and 3× is achieved by the

CDCP scheme compared to the blocking and NBC schemes.

The improvement ratio of the CDCP scheme compared to

the blocking scheme is consistent among the system sizes

evaluated suggesting that a similar improvement will also

be found at larger processor counts. This improvement is

mostly due to the DCP ratio of 1:4 used that reduces the

number of communication steps to complete the collective. To
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give more insight on the impact on performance of the DCP

ratio, Figure 10 shows the collective latency for the CDCP

scheme on a 512-processor job when scaling the number of

DCPs in the system. As can be seen, although the case of 1

DCP in the system (DCP ratio of 1:512) should achieve the

lowest number of steps, it is not efficient due to the higher

contention generated in the DCP inevitably increases the

collective latency (3500 μs) with respect to the 128-DCP case

(40 μs). Increasing the number of DCPs drastically reduces

the contention as can be also seen in Figure 10. In particular,

starting at 32 DCPs (DCP ratio 1:16) the CDCP scheme is able

to improve the performance compared to the blocking scheme

(see also Figure 9). And the optimal DCP ratio is achieved on

64 DCPs (DCP ratio 1:8) where the collective latency reaches

the lowest value, of 40 μs.

Figure 11 shows the case of increasing the collective size for

the blocking, NBC, and CDCP schemes for the 512-processor

job. As can be seen, increasing the collective size negatively

affects the performance of the CDCP scheme due to the higher

contention generated in the DCP from sending/receiving larger

messages. The performance of the CDCP scheme is reduced

by 9% on a 1024-byte collective size. However, large collective

sizes are not very common in scientific applications.

The collective latency can be collected by using these

microbenchmarks for various collective sizes, job sizes, and

various DCP ratios in order to automatically determine the

optimal DCP ratio for a particular system and application. The

CDCP scheme can be automatically configured to the optimal

DCP ratio for the largest collective size of the application

that will be the worse case. Applications could be benefited

from the CDCP scheme because the reduced collective latency

and overhead that is achieved in the optimal DCP ratio.

Moreover, in certain cases the optimal DCP ratio can be

relaxed for some particular applications. These applications

are the ones that can fully overlap the collective with some

computation/communication activities of the application. In

this case, because the collective can be fully overlapped the

DCP ratio can be higher than the optimal DCP ratio reducing

the number of DCPs required in the system. In order to not

degrade the application performance the DCP ratio should be

selected to the one that the collective latency is equal or lower

than the amount of computation/communication time available

to overlap. For example, in case that the application exhibit

95 μs for overlapping then we can use 16 DCPs (DCP ratio

1:32) instead of the 64 DCPs (DCP ratio 1:8) required for

applications that do not exhibit any overlap (see Figure 10).

Based on the optimum DCP ratio the CDCP scheme can

increase the collective performance, but at the expenses of

reducing available parallelism of the application due to the

DCPs. For some applications the reduction in parallelism may

have a higher impact on performance than the improvement in

the collective performance. Therefore, not all applications will

be benefited by the CDCP scheme, and the criteria basically

depends on the total amount of computation time in the

application versus the time spent in the collectives. This will

be discussed in more detail below.

Given that the performance of an application can be gen-

erally described as the summation of the computation time

(Tcomp), the collective time (Tcoll), and the point-to-point

communication time (Tpoint), and also given the fact that the

computation time is increased by a factor of the DCP ratio and

the performance of the collective can be increased by a factor

of 30%, then the performance of an application in the CDCP

scheme can be given by

(1 + DCP−ratio)Tcomp + 0 .7Tcoll + Tpoint

It can be proved that in order for the CDCP scheme improve

the performance of an application then it must fulfill the

following condition for the case of non-overlapped collectives:

Tcoll > DCP−ratio
0 .3 × Tcomp

and for the case of overlapped collectives:
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Tcoll > DCP−ratio × Tcomp

In essence, the collective time should be larger than a

fraction of the computation time in order to improve the

application performance. We believe that this condition is

fulfilled for most applications running in strong-scaling mode

because the collective costs often become the limiting factor

in the performance specially at large processor counts.

F. Evaluation on a Scientific Application

The CDCP scheme was evaluated using the Parallel Ocean

Program (POP). The run-time of POP is basically dominated

by the barotropic phase, more specifically by the conjugate

gradient solver (CG) that is used to solve a two-dimensional

system of linear equations. Each iteration of this solver is

composed on a series of communication and computation

phases that are performed on the local sub-grid. At the end

of an iteration there is a correction and convergence test

phase that is performed every ten iterations. There are a total

of five communication phases, three of which are collective

operations (Allreduce) and two are a set of multiple point-to-

point communication operations.

We applied the CDCP scheme to the three collective oper-

ations in order to overlap these operations with the available

computation and communication phases. The first collective is

overlapped with the computation of the solution correction in

the correction and convergence test phase. Finally, the second

and the third collectives are overlapped with the point-to-

point communications performed in the main iteration as well

as in the correction and convergence test phase, respectively.

No more computation/communication can be overlapped for

these collectives due to data dependencies. The timing data

presented in this section corresponds to the average execution

time of a set of ten iterations of the solver over 10,000

iterations.

Figure 12 shows the execution time of POP for the blocking,

NBC, and CDCP schemes when scaling the number of pro-

cessors. A DCP ratio of 1:4 is used in the CDCP scheme.

As can be seen, the performance of POP is significantly

increased when using the CDCP scheme on processor counts

of 160 and larger. In particular, on 640 processors the CDCP

scheme achieves an improvement of 15% and 16% with

respect to the blocking and NBC schemes respectively. This

behavior is explained by the fact that the CDCP scheme

reduces the application execution time when the total time

of the collectives is higher than a certain fraction of the total

computation time as described in Section V-E. This condition

starts to occur at 160 processors for the POP application.

In addition, scaling the application to larger processor

counts in the blocking and NBC schemes does not contribute

to improved performance as can be also observed in Fig-

ure 12. This is because at large processor counts the increased

communication costs offset the advantage of using further

parallelism for the application. However, the CDCP scheme

is able to provide increased performance as it can effectively

overlap the collective with other communications. This result

is very important since it clearly illustrates that although the

CDCP scheme reduces the parallelism of the application it can

effectively make better use of the computational resources in

the system with respect to other schemes.

Figure 13 shows the execution time of POP for the CDCP

scheme for various number of DCPs on 512 application

processors. As can be seen, when increasing the number of

DCPs the execution time asymptotically decreases to achieving

the best performance on both 64 DCPs (DCP ratio of 1:8)

and 128 DCPs (DCP ratio of 1:4). However, also note that

starting when only 8 DCPs are used (DCP ratio 1:64), the

performance improvement is still significant, achieving 95%

the performance that it is achieved when using 64 DCPs. This

result suggests that the amount of resources needed in the

CDCP scheme can be small — representing only a 1.5% of

the total application processors (512 processors).
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VI. CONCLUSIONS

In this paper we have presented an approach that can

significantly increase the performance of collective operations.

The approach, that we term CDCP (Configurable Dedicated
Collective Processors), uses a multiple program multiple data

(MPMD) programming model to offload the collective to a

number of available processors that are not used to run the

application. The viability and efficiency of this scheme has

been demonstrated for the Allreduce collective on a current

large-scale cluster.

This atypical approach to calculate the collectives provides

the combined advantage of reducing the collective latency

while at the same time provides support for fully offloading it’s

processing requirements. Results show that the collective over-

head per processor is one order of magnitude lower (1.6 μs)

than over published methods, and also that the collective

latency can be reduced by 30% with respect to the default

implementation.

This combination results in a substantially improved perfor-

mance of applications at large scale. Analysis of an important

large-scale scientific application (POP) showed that the CDCP

scheme significantly increases its performance by 15% on 640

processors without requiring additional processing resources

or special purpose hardware. Thus, the CDCP scheme can be

considered as an scalable and effective technique to further in-

crease the performance of scientific applications at large-scale.

In addition, the study of POP also revealed that one important

source of unexploited parallelism resides in the parallelism

between communication operations. On the other hand, the

parallelism between communication and computation may be

small and in some cases nonviable to exploit due to data

dependencies. The typical SPMD model was inefficient or

insufficient to exploit this type of parallelism, and a MPMD

model like the CDCP scheme was crucial to harness this

parallelism.

In future work, we plan to support other collective primitives

in the CDCP scheme such as the MPI Alltoall. This is limiting

factor on the performance on some applications such as

multidimensional Fast Fourier Transform algorithms. We also

plan to analyze the benefit of the CDCP scheme to tolerate

process skew (or O/S jitter) which has been shown to be a

critical factor that degrades collective performance at large

processor counts in many systems.
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