Analyzing the Trade-off between Multiple Memory Controllers
and Memory Channels on Multi-core Processor Performance

José Carlos Sancho, Mike Lang, Darren J. Kerbyson

Performance and Architecture Laboratory (PAL)
Computer Science for HPC (CCS-1)

Los Alamos National Laboratory, NM 87545, USA
{jcsancho,mlang,djk}@lanl.gov

Abstract

Increasing the core-count on current and future processors is posing critical chal-
lenges to the memory subsystem to efficiently handle concurrent memory requests.
The current trend to cope with this challenge is to increase the number of memory
channels available to the processor’s memory controller. In this paper we investigate
the effectiveness of this approach on the performance of parallel scientific applications.
Specifically, we explore the trade-off between employing multiple memory channels per
memory controller and the use of multiple memory controllers. Experiments conducted
on two current state-of-the-art multicore processors, a 6-core AMD Istanbul and a 4-
core Intel Nehalem-EP, for a wide range of production applications shows that there
is a diminishing return when increasing the number of memory channels per memory
controller. In addition, we show that this performance degradation can be efficiently
addressed by increasing the ratio of memory controllers to channels while keeping the
number of memory channels constant. Significant performance improvements can be
achieved in this scheme, up to 28%, in the case of using two memory controllers with
each with one channel compared with one controller with two memory channels.

1 Introduction

The increased silicon integration that is possible today and foreseen into the future has lead
to an unprecedented growth in the number of processor-cores. Current main-stream proces-
sors from Intel, AMD, and IBM have 6-8 cores and recent experimental designs have much
more, such as the 48-cores x86 processor from Intel [8]. However, this increase in compute
capability comes with a significant cost - that of tremendously stressing the memory subsys-
tem, and making worse the well-known memory wall that can profoundly limit performance.
Current memory subsystem designs are not able to sustain all the memory requirements from
multiple cores for many memory intensive applications. A major constraint that prevents a
linear performance improvement of the memory subsystem, proportional to the core-count,
is the processor pin-count. The design of the memory subsystem is critical in order to achieve
maximum efficiency from the available pins.

The current industry trend to cope with the memory challenge to multi-core processors
is to increase the number of memory channels available to the memory controller. Examples
illustrating the increase in the number memory channels include the Intel’s Nehalem pro-
cessors [4] that currently has three memory channels with a single memory controller (the
quad-core Nehalem-EP), which will increase to four memory channels next year (the oct-core
Nehalem-EX). The next generation of the IBM’s power processor, the oct-core Power7, will
use eight memory channels spread across two memory controllers. This trend for increasing
the performance of the memory subsystem is evolutionary as it leverages previous memory
controller designs. However, it does has an additional advantage of substantially boosting

the performance on sequential since a single core can potentially use all available channels
simultaneously. It is not clear how this current trend will remain suitable for parallel appli-
cations in which the optimization of single threaded applications is not important but rather
sustaining concurrent demand from multiple threads. Future technological innovations, such
as stacking processors and memory chips using Through Silicon Vias (TSV), will also tackle
this challenge but are currently in an experimental phase.

This paper aims to shed some light into memory subsystem performance for multi-core
processors for large-scale scientific applications by exploring the trade-offs between multiple
memory channels per memory controller and multiple memory controllers. We show that
there is a alarming diminishing performance return when considering the current trend of
increasing the number of memory channels per memory controller. Moreover, we show how
this diminishing return could be efficiently addressed by adding more memory controllers
in a processor while keeping the total number of channels per chip constant, i.e. keep-
ing the pin-count constant. We quantify how much performance improvement is lost when
increasing the number of memory channels per memory controller, and also how much per-
formance could be achieved by increasing the number of memory controllers instead. Results
from empirical experiments are included for a wide range of scientific applications, memory-
bound to compute-bound, on two state-of-the-art production HPC processors - Intel’s 4-core
Nehalem-EP [4] and AMD’s 6-core Istanbul [9].

The rest of this paper is organized as follows. Section [2| describes our method that
enables an empirical analysis of varying the number of memory channels and memory con-
trollers available as well as describing the testbeds and the scientific applications employed.
Section [3] discusses the results obtained from the testbeds. Related work on analyzing the
performance impact of the memory subsystem is summarized in Section[dl Conclusions from
this work are given in Section

2 Approach

Our approach to analyze the trade-off between using multiple memory controllers and mul-
tiple memory channels is described below. We employ the use of a broad set of production
scientific applications and two current state-of-the-art multi-core processors from AMD and
Intel. The first compute-node contains four 6-core AMD Istanbul processors and the second
contains two 4-core Intel Nehalem-EP processors. As listed in Table [T} each Istanbul proces-
sor, executing at 2.6GHz, has a single memory controller with two DDR2-800MHz memory
channels. Each Nehalem-EP processor, executing at 2.93GHz, also has a single memory
controller but with three DDR3-1333MHz memory channels. The other processors listed in
Table [If are near-to-market processors that have also been investigated but results cannot
be published at this time.

Table 1: Current state-of-the-art processing nodes

Vendor Name procs/node cores/proc Controllers/proc Channels/controller Memory
AMD Istanbul 2o0r4 6 1 2 DDR2
AMD MagnyCours 4 or 8 6 1 2 DDR3
Intel Nehalem-EP 2 4 1 3 DDR3
Intel Nehalem-EX 2o0r4 8 1 4 DDR3
IBM Power7 4 8 2 8 DDR3

The default mode of operation of these processors is to use of all cores, where each core
executes a separate thread of the application, and to use all of the memory channels requiring
all channels to be populated by identical memory DIMMS.

COC2
C3C5

C3C5

L3 Cache L3 Cache \ L3 Cache } { L3 Cache \
T T
[Memctl | [Memctl |
I I I I
1. Fully populated 2. Partially populated 3. Altering the number of memory
memory channels memory channels controllers by using two processors
on a processor on a processor

Figure 1: The three scenarios used for evaluating multiple memory channels and controllers.

In this work we explore the achievable performance using three scenarios:

1. Using the default node configuration, with fully populated memory channels, to explore
the achievable performance when varying the number of processor-cores used.

2. Undertake the same analysis as in case 1 but using only a sub-set of the available memory
channels.

3. Alter the ratio of memory-controllers to memory-channels by using only a sub-set of the
available cores per processor, and spreading the cores-used among processors within the
node.

These three cases are illustrated in Figure [l for a six-core single processor with two mem-
ory channels. In case 1, when using a single processor, all memory channels are populated
and between 1 and the maximum available number of cores are used on the single processor.
Case 2 is identical except that the memory channels are underpopulated by the physical
removal of memory DIMMS. The change in the ratio between memory controllers and chan-
nels, case 3, is achieved using multiple processors and by also underpopulating the memory
channels. Note that this is an approximation but captures the first-order effects to enable
conclusions to be drawn from this analysis.

Clearly, the advantage of this approach is that we can quickly obtain estimates on actual
hardware without having to perform any simulations. However the approach provides an
approximation to the performance that may be achievable, for case 3. It includes some per-
formance penalties caused by the spread of processes across multiple processors rather than
having the controllers on the same processor. Penalties include the extra communication
generated to transfer data among processors. In the case of our two testbeds, we can only
compare the case of using two memory controllers (two processors) with one memory channel
on each and can compare it to the case of one memory controller with two memory channels.
Further configurations are not possible using our testbeds.

For all cases, application performance is measured for a fixed problem size on a single
processor following the strong scaling model. Moreover, performance results are collected for
various core-counts so as to also investigate the sensitivity of core-count on the performance.
Note that when spreading out the cores being used across processors, for case 3, we also
increase the application’s working set in proportion to the number of processors being so as
to minimize the effect of having multiple L3 caches available.

—®- nehalem-2channels —| 1.80E+09

1.006+09

Bandwidth (GB/s)

Processing rate (cells/s)

2.006+08

Number of cores Number of cores

Figure 2: STREAMS performance. Figure 3: SAGE performance.

2.1 Scientific applications

The applications used in this analysis are SAGE [10], MILC [14], POP [I1], S3D [7], XNO-
BEL, and SWEEP3D [I2]. Many of these are taken from existing workloads within the
Department of Energy, and are summarized in Table[2] These applications have differing re-
quirements of the memory subsystem. At one extreme is SAGE - a memory-bound code, and
at the other extreme is SWEEP3D - a compute-bound code. In addition we also make use
the STREAMS [13] benchmark to measure the peak achievable bandwidth of the memory
subsystem, and to compare against application performance.

Table 2: Description of scientific applications

Name Description Input deck Problem size Processing type
SAGE Hydro dynamics (Hydro) timing_h 140, 000 Memory
MILC Quantum chromodynamics SUS_RMD 8 x 8 x 40 x 48 Memory
POP Ocean circulation model xl 320 x 384 x 40 Memory/Compute
S3D 3D Turbulent combustion typical 100 x 100 x 100 Memory/Compute
XNOBEL Hydro with high explosives typical 10 x 10 x 10 Memory
SWEEP3D 3D Sy radiation transport Pencil 20 x 10 x 400 Compute

3 Evaluation

The analysis is split into two main sections - the first deals with the default processor con-
figuration when fully (case 1) and partially populating (case 2) available memory channels,
and the second details the case of using multiple memory controllers (case 3).

3.1 Multiple memory channels per memory controller

We focus initially on the performance of the STREAMS benchmark and use these results to
explain the underlying principles that are also seen in the application results.

3.1.1 STREAMS performance

Figure [2| shows the performance impact on STREAMS when varying both the number of
memory channels and number of cores on the Istanbul and Nehalem processors. As can be
seen, a single core can achieve up to 5.7 GB/s and 7.3 GB/s from a single memory channel on
Istanbul and Nehalem respectively. These numbers represent 90% and 70% of the hardware
peak memory bandwidth for DDR2-800 and DDR3-1333 (6.4Gb/s and 10.6 GB/s).

4

uuuuuuuuuuuuuuuu

«-a-- nehalem-3channels

9000000.00 1~ _m- nehalem-2channels

uuuuuuu

nnnnnnnnn

uuuuuuuuu

uuuuuuuu

N
-

ocessing rate (cells/s)
u
1
1
1
\
1

Processing rate (cells/s)

nnnnnnn

1000000.00

0.00

Number of cores Number of cores

Figure 4: XNOBEL performance. Figure 5: MILC performance.

When increasing the number of memory channels, a single core achieves improved perfor-
mance by simultaneously using the additional channels. 7.7 GB/s is achieved by a single-core
on Istanbul and up to 11.3 GB/s and 11.7 GB/s on two and three channels respectively on
Nehalem. Therefore, performance improvements can be obtained by sequential applications
when employing multiple channels.

When using multiple cores, reflecting parallel applications, the aggregate bandwidth
achieved increases on both Intel and AMD processors with respect to a single-core. But, the
bandwidth does not increase linearly with the number of cores used. A saturation point can
be observed above which no further improvement in bandwidth occurs. The performance
achieved at the saturation point on a single memory channel is denoted as Perfi_channel-
For Istanbul, the saturation point occurs at one-core and three-cores when using one or two
memory channels respectively. The resulting aggregate bandwidth when using two channels
is 10.5GB/s - only a 35% increase above a single-cores bandwidth. For Nehalem, the sat-
uration point occurs at one-core, two-cores, and three-cores when using one, two and three
memory channels respectively. The aggregate bandwidth increases by 14% (12.9GB/s) and
40% (16.3GB/s) for the two and three channel cases at the saturation points. Note that
when using more cores beyond the saturation points the delivered performance drops, by as
such as 4%, due to contention on the single memory controller from multiple cores.

Table 3: Summary of STREAMS bandwidth

1 channel 2 channel 3 channel
Processor Peak STREAMS % Peak STREAMS % Peak STREAMS %
Istanbul 6.4 5.7 89% 12.8 10.5 2%
Nehalem 10.6 7.3 68% 21.2 12.9 61% 31.8 16.3 51%

A summary of the achievable STREAMS bandwidth at the saturation points is listed
in Table [3| when using different numbers of memory channels. It can be seen that only a
fraction of the peak bandwidth is being achieved and that the fraction significantly decreases
as the number of memory channels increases. These results clearly indicate that there is a
diminishing return on the aggregate bandwidth that one or multiple cores can achieve when
using multiple channels with a single memory controller.

uuuuuuuuuuu
«-a-- nehalem-3channels -~ nehalem-3channels
~m- nehalem-2channels ~m- nehalem-2channels

— istanbul-2channels —e- istanbul-2channels
—istanbul-Ichannel .~ —istanbul-Lchannel &7
GGGGG .

uuuuuuu

e (cells/s)

uuuuu

te (
N
L}
3

NS
i
N,

nnnnn

Processing rate (cells/s)
A

uuuuu
uuuuu

nnnnn

uuuuu

Number of cores Number of cores

Figure 6: S3D performance. Figure 7: POP performance.

3.1.2 Scientific application performance

The application suite was run under the same conditions as the STREAMS benchmark
for various memory channel configurations and core-counts. The observed performance for
SAGE, XNOBEL, MILC, S3D, POP, and SWEEP3D are shown in Figures 3 [[, [6]
[7, and [§] respectively. The performance of these applications, when varying the number of
memory channels, is similar to that observed for STREAMS apart from SWEEP3D. The
performance of SWEEP3D is invariant to the number of channels as it is compute-bound
and performance improvements are due solely to the increased parallelism.

Applications that are mostly memory bound, or a mixture of compute and memory
bound, are impacted significantly by the number of memory channels. In particular, the per-
formance is increased by 64%, 60%, 30%, 35%, and 54% for SAGE, XNOBEL, MILC, S3D,
and POP, respectively, when using two channels compared with a single memory channel. On
Nehalem, the performance is increased by 76%, 77%, 44%, 40%, and 62% using two channels,
and by 35%, 30%, 17%, 20%, and 0% when using three channels for the same applications.

Note that for many of the applications, the performance increases monotonically with
core-count as there is not enough cores to reach a saturation point. Only SAGE, XNOBEL,
and MILC reach a saturation point. The saturation point for SAGE is at 3 cores per channel
on Istanbul and 2 cores per channel on Nehalem. The saturation point for XNOBEL and
MILC is at 4 cores per memory channel on Istanbul. As shown for these applications we
still observe a diminishing return in common with STREAMS when using multiple channels
with a single memory controller.

3.2 Multiple memory controllers

Here we mimic the case of using two memory controllers per processor by using multiple
processors as described in Section 2l The principle followed is to compare the performance
when using the same number of memory channels but spread across multiple memory con-
trollers. The testbed nodes enable a direct comparison between a single processor having a
single memory-controller with two channels and two processors each having a single memory-
controller with a single channel. In both cases, the same number of cores is used by the ap-
plications. The observed performance improvements achieved in this case, for both Istanbul
and Nehalem are shown in Figure[d] It can been that in all cases, a performance improvement
occurs of up to 28% (XNOBEL on Istanbul) with a minimum of 5% (MILC on Nehalem).
Larger improvements are seen on Istanbul because it is the one more penalized when us-

ing multiple memory channels at the memory controller. Those performance improvements
are really close, within 3%, from the ideal Per f,channets on STREAMS and SAGE that are

uuuuuuuuuuuuu
«-a-- nehalem-3channels } mistanbul
P

o% | ®nehalem

/ PEd
.
5000000 ra
P - ~
, L
4000000 v
p
uuuuuuu //
nnnnnnn d
v

Processing rate (cells/s)

ance improvement (%)

form:

0.00%
Numberofcores ~ STREAMS

Figure 8: SWEEP3D performance. Figure 9: Application performance
improvement on two memory controllers.

the applications that already have enough cores to reach saturation points on this setup.
4 Related work

The work in this paper spans the areas of application performance, memory performance
analysis, and systems architecture. The original memory wall problem stems from the mem-
ory subsystem not keeping pace with the increasing processor clock speed [15]. Presently, the
speed of processors have plateaued but the memory issues remain due to the increase in core-
count - it is a parallel feed rather than a serial one [6] that is now poses the greatest challenge.
As such, this study is similar to previous work that characterizes memory performance.

There have been many recent studies on the achievable application performance on multi-
core processors including [I]. Further work has focused on the optimization of the memory
controller itself including [3], and others have looked at predicting future memory perfor-
mance based on reducing memory bus frequency [5]. Higher density of memory controllers
have been suggested and designed in the past, including Compaq’s 8-core Piranha, which
had 8 memory controllers - one per memory channel [2] on a single die.

5 Conclusions

Currently, a trend to cope with the memory challenge posed by increasing cores in a proces-
sors is being addressed by increasing the number of memory channels available to a memory
controller. In this paper, we investigate the effectiveness of this approach. Through empirical
analysis using scientific applications on two state-of-the-art multicore processor nodes from
Intel and AMD we have demonstrated this approach is not sufficiently effective for a wide
rage of parallel applications. Performance does not increase proportionally as the number of
memory channels, available to a memory controller, increases. On today’s multicore proces-
sors, memory-intensive scientific applications achieve between a 30% and 76% performance
increase when using two memory channel compared with one, and between a negligible and
35% performance increases when using a third channel. This trend needs to be addressed
because memory channels, and thus pin count, are a scarce processor resource which should
be fully exploited.

We have investigated the case of adding more memory controllers on a chip in order to
overcome these diminishing returns. We have shown that by higher performances can be
achieved by increasing the number of memory controllers in a chip whilst keeping the overall
number of channels constant. One memory channel per controller can achieve significant
improvements for parallel applications rather than having multiple channels. In particular,
two memory controllers each with one channel can increase the performance by 28% in com-

parison to one controller with two channels. Larger performance improvements are expected
with larger numbers of memory controllers. However, more work has to be done in order
to fully deploy this approach in current processors. In particular, the affinity between cores
and memory controllers as well as coherency and addressability of the entire memory from
each core all been to be investigated. We feel that this work provides a unique analysis into
the trade-off between memory controllers and memory channels using current production
applications and state-of-the-art processing nodes.

Acknowledgments

This work was funded in part by the Advanced Simulation and Computing program of the
Department of Energy, and the Office of Science. Los Alamos is operated by the Los Alamos
National Security, LLC for the US Department of Energy under contract No. DE-AC52-
06NA25396.

References

[1] K. Barker, K. Davis, et al. A Performance Evaluation of the Nehalem Quad-core Processor
for Scientific Computing. Parallel Processing Letters, 18(4):453-469, Dec. 2008.

[2] L. A. Barroso, K. Gharachorloo, et al. Piranha: a Scalable Architecture based on Single-chip
Multiprocessing. In Proceedings of International Symposium on Computer Architecture.
Vancouver, Canada, Jun. 2000.

[3] J. B. Carter and L. Zhang. A Study of Performance Impact of Memory Controller. In Pro-
ceedings of Workshop on Memory Performance Issues, in conjunction with the International
Symposium on Computer Architecture. Munich, Germany, Jun. 2004.

[4] J. Casazza. First the Tick, Now the Tock: Intel Microarchitecture (Nehalem). In Intel
White Paper. 2009. Available at http://www.intel.com/technology/architecture-silicon/next-

gen/319724.pdf.

[5] D. Doerfler. Personal Communication. 2009.

[6] J. Dongarra, G. Dennis, et al The Impact of Multicore on Computa-
tional Science Software. CTWatch Quarterly, 3(1), Feb. 2007 . Available
at http:/ /www.ctwatch.org/quarterly/articles /2007 /02 /the-impact-of-multicore-on-

computational-science-software/index.html.

[7] E. R. Hawkes, R. Sankaran, et al. Direct Numerical Simulation of Turbulent Combustion:
Fundamental Insights towards Predictive Models. Journal of Physics, 16:pp. 65-79, 2005.

[8] Futuristic —Intel Chip Could Reshape How Computers are Built, Con-
sumers Interact with Their PCs and Personal Devices. Press released at
http://www.intel.com/pressroom/archive/releases/2009/20091202comp_sm.html.

[9] AMD Istanbul Processor. Information available at http://developer.amd.com/ZONES/ISTANBUL.

[10] D. J. Kerbyson, H. J. Alme, et al. Predictive Performance and Scalability Modeling of a Large-
scale Application. In Proceedings of the Supercomputing Conference. Denver, CO, Nov. 2001.

[11] D.J. Kerbyson and P. W. Jones. A Performance Model of the Parallel Ocean Program. Interna-
tional Journal of High Performance Computing Applications, vol. 35(no. 3):pp. 261-276, 2005.

[12] K. R. Koch, R. S. Baker, et al. First-Order Form of the 3-D Discrete Ordinates Equation on
a Massively Parallel Processor. Trans. of the American Nuclear Soc., 65:pp. 198-199, 1992.

[13] J. McCalpin. Memory Bandwidth and Machine Balance in Current High Performance Com-
puters. IEEE Computer Society Technical Committee on Computer Architecture (TCCA)
Newsletter, pp. 19-25, 1995. Code available at http://www.cs.virginia.edu/stream/.

[14] MIMD Lattice ~Computation (MILC) Collaboration. Code available at
http://www.physics.indiana.edu/ sg/milc.html.

[15] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications of the Obvious.
SIGARCH Computation Architecture News, 23(1):pp. 20-24, 1995.

	Introduction
	Approach
	Scientific applications

	Evaluation
	Multiple memory channels per memory controller
	STREAMS performance
	Scientific application performance

	Multiple memory controllers

	Related work
	Conclusions

