
1

Performance Analysis of Wavefront Algorithms on
Very-Large Scale Distributed Systems

Adolfy Hoisie, Olaf Lubeck and Harvey Wasserman
<hoisie, oml, hjw> @lanl.gov

Scientific Computing Group
Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract. We present a model for the parallel performance of algorithms that consist of
concurrent, two-dimensional wavefronts implemented in a message passing environment.
The model combines the separate contributions of computation and communication wave-
fronts. We validate the model on three important supercomputer systems, on up to 500
processors. We use data from a deterministic particle transport application taken from the
ASCI workload, although the model is general to any wavefront algorithm implemented
on a 2-D processor domain. We also use the validated model to make estimates of per-
formance and scalability of wavefront algorithms on 100-TFLOPS computer systems ex-
pected to be in existence within the next decade as part of the ASCI program and else-
where. On such machines our analysis shows that, contrary to conventional wisdom, in-
ter-processor communication performance is not the bottleneck. Single-node efficiency is
the dominant factor.

1. Introduction

Wavefront techniques are used to enable parallelism in algorithms that have re-
currences by breaking the computation into segments and pipelining the segments
through multiple processors [1]. First described as “hyperplane” methods by
Lamport [2], wavefront methods now find application in several important areas
including particle physics simulations [3], parallel iterative solvers [4], and par-
allel solution of triangular systems of linear equations [5-7].
Wavefront computations present interesting implementation and performance
modeling challenges on distributed memory machines because they exhibit a
subtle balance between processor utilization and communication cost. Optimal
task granularity is a function of machine parameters such as raw computational
speed, and inter-processor communication latency and bandwidth. Although it is
simple to model the computation-only portion of a single wavefront, it is consid-
erably more complicated to model multiple wavefronts existing simultaneously,
due to potential overlap of computation and communication and/or overlap of
different communication or computation operations individually. Moreover, spe-
cific message passing synchronization methods impose constraints that can fur-
ther limit the available parallelism in the algorithm. A realistic scalability analy-
sis must take into consideration these constraints.

2

Much of the previous parallel performance modeling of software-pipelined appli-
cations has involved algorithms with one-dimensional recurrences and/or one-
dimensional processor decompositions [5-7]. A key contribution of this paper is
the development of an analytic performance model of wavefront algorithms that
have recurrences in multiple dimensions and that have been partitioned and pipe-
lined on multidimensional processor grids. We use a “compact application”
called SWEEP3D, a time-independent, Cartesian-grid, single-group, “discrete
ordinates” deterministic particle transport code taken from the DOE Accelerated
Strategic Computing Initiative (ASCI) workload. Estimates are that deterministic
particle transport accounts for 50-80% of the execution time of many realistic
simulations on current DOE systems; this percentage may expand on future 100-
TFLOPS systems. Thus, an equally-important contribution of this work is the
use of our model to explore SWEEP3D scalability and to show the sensitivity of
SWEEP3D to per-processor sustained speed, and MPI latency and bandwidth on
future-generation systems.
Efforts devoted to improving performance of discrete ordinates particle transport
codes date back many years and have extended recently to massively-parallel
systems [8-12]. Research has included models of performance as a function of
problem and machine size, as well as other characteristics of both the simulation
and the computer system under study. For example, Koch, Baker, and Alcouffe
[3] developed a parallel efficiency formula that considered computation only,
while Baker and Alcouffe [9] developed a model specific to CRAY T3D put/get
communication. However, these previous models had limiting assumptions about
the computation and/or the target machines.
In this work, we model parallel discrete ordinates transport and account for both
computation and communication. We validate the model on several architectures
within the realistic limits of all parameters appearing in the model. Sections 2 and
3 of the paper briefly describe the algorithm and its implementation. Sections 4
and 5 derive the performance model and give validation results. In the final sec-
tions of the paper, the model is used to estimate SWEEP3D performance on fu-
ture generation parallel systems, showing the sensitivity of this application to
system computation and communication parameters.
Note that although we present results for three different parallel systems, no
comparison of achieved system performance or scalability is intended. Rather,
measurements from the three systems are presented in an effort to demonstrate
generality of the performance model and sensitivity of application performance to
machine parameters.

2. Description of Discrete Ordinates Transport

Although much more complete treatments of discrete ordinates neutron transport
have appeared elsewhere [12-14], we include a brief explanation here to make
clear the origin of the wavefront process in SWEEP3D. The basis for neutron
transport simulation is the time-independent, multigroup, inhomogeneous Boltz-
mann transport equation, which is formulated as

3

∇⋅ΩΨ(r,E,Ω) + ∫∫σ(r,E)ψ(r,E,Ω) =
∫∫dE′d′(r,E′ → E,Ω⋅Ω′)Ψ(r,E′,Ω′) +
(1/4π)∫∫dE′dΩ′χ(r,E′ → E)νσ (r,E′)Ψ(r,E′,Ω′) + Q(r,E,Ω).

The unknown quantity is Ψ, which represents the flux of particles at the spatial
point r with energy E traveling in direction Ω.
Numerical solution involves complete discretization of the multi-dimensional
phase space defined by r, Ω, and E. Discretization of energy uses a “multigroup”
treatment, in which the energy domain is partitioned into subintervals in which
the depedence on energy is known. In the discrete ordinates approximation, the
angular-direction Ω is discretized into a set a quadrature points. This is also re-
ferred to as the SN method, where (in 1D) N represents the number of angular or-
dinates used. The discretization is completed by differencing the spatial domain
of the problem on to a grid of cells.
The numerical solution to the transport equation involves an iterative procedure
called a “source iteration” (see Ref. 13). The most time-consuming portion is
the “source correction scheme,” which involves a transport sweep through the
entire grid-angle space in the direction of particle travel. A lower triangular ma-
trix is obtained, as such one needs to go through the grid only once in inverting
the iteration matrix. In Cartesian geometries, each octant of angles has a differ-
ent sweep direction through the mesh, and all angles in a given octant sweep the
same way.
For a given discrete angle, each grid cell has a spatially-exact particle “balance
equation” with seven unknowns. The unknowns are the particle fluxes on the six
cell faces and the flux within the cell. Boundary conditions and the spatial dif-
ferencing approximation are used to provide closure to the system. Boundary
conditions (typically vacuum or reflective) allow the sweep to be initiated at the
object’s exterior. Thereafter, for any given cell, the fluxes on the three incoming
cell planes for particles traveling in a given discrete angle are known and are
used to solve for the cell center and the three cell faces through which particles
leave the cell. Thus, each interior cell requires in advance the solution of its
three upstream neighboring cells – a three-dimensional recursion. This is illus-
trated in Figure 1 for a 1-D arrangement of cells and in Figure 2 for a 2-D grid.

Figure 1. Dependences for a 1-D Transport Sweep.

4

Figure 2. 2-D Transport Sweep along a Diagonal Wavefront.

3. Parallelism in Discrete Ordinates Transport

The only inherent parallelism is related to the discretization over angles. How-
ever, reflective boundary conditions limit this parallelism to, at most, angles
within a single octant.
The two-dimensional recurrence may be partially eliminated because solutions
for cells within a diagonal are independent of each other (as shown in Figure 2).
The success of this “diagonal sweep” scheme on SIMD computers such as single-
processor vector systems (using 2-D plane diagonals) and the Thinking Ma-
chines, Inc. Connection Machine (using 3-D body diagonals) has been demon-
strated [3].
Diagonal concurrency can also be the basis for implementation of a transport
sweep using a decomposition of the mesh into subdomains using message passing
to communicate the boundaries between processors, as described in [12] and
shown in Figure 3. The transport sweep is performed subdomain by subdomain
in a given angular direction. Each processor’s exterior surfaces are computed by,
and received in a message from, “upstream” processors owning the subdomains
sharing these surfaces.
However, as pointed out by Baker [9] and Koch [3], the dimensionality of the SN

parallelism is always one order lower than the spatial dimensionality because re-
cursion in one spatial direction cannot be eliminated.
Because of this, parallelization of the 3-D SN transport in SWEEP3D uses a 2-D
processor decomposition of the spatial domain.
Parallel efficiency would be limited if each processor computed its entire local
domain before communicating information to its neighbors. A strategy in which
blocks of planes in one direction (k, in the current implementation) and angles
are pipelined through this 2-D processor array improves the efficiency, as shown
in Figure 3. Varying the k- and angle-block sizes changes the balance between
parallel utilization and communication time.

5

Figure 3. Illustration of the 2-D Domain decomposition on eight processors
with 2 k-planes per block. The transport sweep has started at top of the
processor in the foreground. Concurrently-computed cells are shaded.

4. A Performance Model for Parallel Wavefronts

This section describes a performance model of a message passing implementation
of SWEEP3D. Our model uses a pipelined wavefront as the basic abstraction
and predicts the execution time of the transport sweep as a function of primary
computation and communication parameters. We use a two-parameter (la-
tency/bandwidth) linear model for communication performance, which is
equivalent to the LogGP model [15]. We use the term latency to mean the sum
of L and o in the LogGP framework, and bandwidth to mean the inverse of G.
Since different implementations of MPI use different buffering strategies as a
function of message size, a single set of latency/bandwidth parameters describes
a limited range of message sizes. Consequently, multiple sets are used to de-
scribe the entire range. Computation time is parameterized by problem size, the
number of floating-point calculations per grid point, and a characteristic single-
CPU floating-point speed.

4.1 Pipelined Wavefront Abstraction

An abstraction of the SWEEP3D algorithm partitioned for message passing on a
2-D processor domain (ij plane) is described in Figure 4. The inner-loop body of
this algorithm describes a wavefront calculation with recurrences in two dimen-
sions. Each processor must wait for boundary information from neighboring
processors to the north and west before computing on its subdomain. For con-
venience, we assume that the implementation uses MPI with synchronous,
blocking sends/receives. There is little loss of generality in this assumption since
the subdomain computation must wait for message receipt. Multiple waves initi-
ated by the octant, angle-block and k- block loops are pipelined one after another
as shown in Figure 5, in which two inner loop bodies (or “sweeps”) are executing

6

on a Px by Py processor grid. Each diagonal line of processors is executing the
same k-block loop iteration in parallel on a different subdomain; two such diago-
nals are highlighted in the figure.
Using this pipeline abstraction as the foundation, we can build a model of execu-
tion time for the transport sweep. The number of steps required to execute a
computation of Nsweep wavefronts, each with a pipeline length of Ns stages and a
repetition delay of d is given by equation (1).

Steps = Ns + d(Nsweep – 1), (1)

The first wavefront exits the pipeline after Ns stages and subsequent waves exit at
the rate of 1/d.
The pipeline consists of both computation and communication stages. The num-
ber of stages of each kind and the repetition delay per wavefront need to be de-
termined as a function of the number of processors and shape of the processor
grid. The cost of each individual computation/communication stage is dependent
on problem size, processor speed and communication parameters.

FOR EACH OCTANT DO
 FOR EACH ANGLE-BLOCK IN OCTANT DO
 FOR EACH K-BLOCK DO
 IF (NEIGHBOR_ON_WEST) RECEIVE FROM WEST (BOUNDARY DATA)
 IF (NEIGHBOR_ON _NORTH) RECEIVE FROM NORTH (BOUNDARY)
 COMPUTE_MESH (EVERY I,J DIAGONAL; EVERY K IN K-BLOCK;
 EVERY ANGLE IN ANGLE-BLOCK)

 IF (NEIGHBOR_ON_EAST) SEND TO EAST(BOUNDARY DATA)
 IF (NEIGHBOR_ON_SOUTH) SEND TO SOUTH(BOUNDARY DATA)
 END FOR
 END FOR
END FOR

Figure 4. Pseudo Code for the wavefront Algorithm

4.2 Computation Stages

Figure 5 shows that the number of computation stages is simply the number of
diagonals in the grid.
A different number of processors is employed at each stage but all stages take the
same amount of time since processors on a diagonal are executing concurrently.
The cost of one computational stage is thus the time to complete one
COMPUTE_MESH function (see algorithm abstraction above) on a processor’s
subdomain. The discussion can be summarized with two equations. Equation (2)
gives the number of computation steps in the pipeline,

1−+= yx
comp
s PPN (2)

and Equation 3 gives the cost of each step,

7

flops

flops

b

a

b

z

y

y

x

x
cpu R

N

A

N

K

N

P

N

P

N
T)(+++= (3)

where Nx, Ny, and Nz are the number of grid points in each direction; Kb is the size
of the k-plane block; Ab is the size of the angular block; Nflops is the number of
floating-point operations per gridpoint; and Rflops is a characteristic floating-point
rate for the processor. The next sweep can begin as soon as the first processor
completes its computation so the repetition delay, dcomp, is 1 computational step
(i.e., the time for completing one diagonal in the sweep).

4.3 Communication Stages

The number and cost of communication stages are dependent on specific charac-
teristics of the communication system. The effect of blocking synchronous com-
munications is that messages initiated by the same processor occur sequentially in
time and messages must be received in the same order that they are sent. As im-
plemented, the order of receives is first from the west, then from the north, and
the order of sends is first to the east and then to the south. These rules lead to the
ordering (and concurrency) of the communications for a 4 x 4 processor grid as
shown in Figure 6 for a sweep that starts in the upper-left quadrant.

PX

PY

N+1
1

N

1 2 3

2 4 6 8
3 5 7

5 7 9

7 9 11

4 6 8 10

6 8 10 12

PX

PY

 Figure 5. Multidimensional Pipelined Figure 6. Communication
 Wavefronts Pipeline.

In Figure 6 edges labeled with the same number are executed simultaneously and
the graph shows that it takes 12 steps to complete one communication sweep on a
4 x 4 processor grid. We assume that a logical processor mesh can be imbedded
into the machine topology such that each mesh node maps to a unique processor
and each mesh edge maps to a unique router link. One can generalize the number
of stages to a grid of Px by Py processors by observing that communication for
each row of processors is initiated by a message from a north neighbor in the first

8

column of processors. South-going messages in the first column of processors
occur on every other step since each processor in the column a) has no west
neighbor, and b) must send east before sending south. Thus the last processor in
the first column receives a message on step 2(Py-1). This initiates a string of
west-going messages along the last row that are also sent on every other step, and
the number of stages in the communication pipeline is given by

)1(2)1(2 −+−= xy
comm
s PPN (4)

Analogous to the computational pipeline, different stages of the communication
pipeline have different numbers of point-to-point communications. However,
since these occur simultaneously, the cost of any single communication stage is
the time of a one-way, nearest neighbor communication. This time is given by:

B

N
tT msg

msg += 0 (5)

where latency + overhead (t0) and bandwidth (B), are defined in LogGP as noted
above.
The repetition delay for the communication pipeline, dcomm

, is 4 because a mes-
sage sent from the top-left processor (processor 0) to its east neighbor (processor
1) on the second sweep cannot be initiated until processor 1 completes its com-
munication with its south neighbor from the first sweep (Figure 6).

4.4 Combining Computation and Communication Stages

In the previous two sections, we derived formulas for the modeling of SWEEP3D
that are general for any pipelined wavefront computation. We can summarize the
discussion in two equations that give the separate contributions of computation
and communication:

Tcomp = [(Px + Py – 1) + (Nsweep – 1)] * Tcpu (6)

Tcomm
 = [2(Px + Py – 2) + 4(Nsweep – 1)]*Tmsg (7)

The major remaining question is whether the separate contributions, Tcomp and
Tcomm, can be summed to derive the total time. They would not be additive if
there were any additional overlap of communication with computation not al-
ready accounted for in each term. To see that this is not the case, consider the
task graph for an execution consisting of two wavefronts on a 3 x 3 processor
grid (Figure 7). This graph shows communication tasks (circles numbered with a
send/receive processor pair) and computation tasks (squares numbered by a com-
puting processor). The total number of stages in the combined communica-
tion/computation pipeline is equal to the number of nodes (of each type) in the
longest path through the graph (the critical path) shown in dotted boxes in the
figure. The critical path for the first sweep can be counted from Figure 7: 5
computational tasks and 8 communication tasks. This result is exactly the num-
ber given by eqns. (2) and (4). One can further verify that there is no further
overlap between two pipelined sweeps other than the predicted sum of

9

8

0

01

03

3

34

14

4

45

47

7

78

58

1

12

2

25

5

36

6

67

8

0

01

03

3

34

14

4

45

47

7

78

58

1

12

2

25

5

36

6

67

Figure 7. Pipelined Wavefront Task Graph.

eqns. (6) and (7). The second sweep completes exactly 1 computation and 4
communication steps after the first.
In summary, total time for the sweep algorithm is the sum of eqns. (6) and (7),
where Tcpu is given by eqn. (3) and Tmsg is given by eqn. (5). The validation of
the model against experiment involves the measurement and/or modeling of
Tmsg and Tcpu. We take Tmsg to be the time needed for the completion of a
send/receive pair of an appropriate size and Tcpu to be the computational work
associated with the subgrid computation on each processor.

5. Validation of the Model

In this section, we present results that validate the model with performance data
from SWEEP3D on three different machines, with up to 500 processors, over the
entire range of the various model parameters. Inspection of eqns. (6) and (7)
leads to identification of the following validation regimes:

Nsweep = 1: This case validates the number of pipeline stages in Tcomp and Tcomm, as

10

functions of (Px +Py), in the available range of processor configurations.

Nsweep ~ (Px+Py): Validation of a case where the contributions of the (Px+Py)and
Nsweep terms are comparable.

Nsweep >> (Px+Py): This case validates the repetition rate of the pipeline.

For each of these three cases, we analyze problem sizes chosen in such a way as
to make:

Tcomp >> Tcomm; (validate eqn. (6) only)
Tcomp = 0; (validate eqn. (7) only)
Tcomp ~ Tcomm; (validate the sum of eqns. (6) and (7)).

5.1 Nsweep = 1

For a single sweep, the coefficients of Tmsg and Tcpu in equations 6 and 7 represent
the number of communication and computation stages in the pipeline, respec-
tively. Any overlap in communication or computation during the single sweep of
the mesh is encapsulated in the respective coefficients. In hypothetical problems
with Tmsg ~ Tcpu, and in the limit of large processor configurations (large Px+Py),
equations 6 and 7 show that the communication component of the elapsed time
would be twice as large as the contribution of the computation time. In reality,
for problem sizes and partitionings reasonably designed (small subgrid surface-
to-volume ratio), Tcpu is considerably larger than Tmsg. Computation is the domi-
nant component of the elapsed time.
This is apparent in Figure 8, which presents the model-experiment comparison
for a weak scalability analysis of a 16 x 16 x 1000 subgrid size sweeping only
one octant. This size was chosen to reflect an estimate of the subgrid size for a 1-
billion cell-problem running on a machine with about 4,000 processors; the for-
mer is a canonical goal of ASCI and the latter is simply an estimate of the ma-
chine size that might satisfy a 3-TFLOPS peak performance requirement. In a
“weak scalability” analysis, the problem size scales with the processor configura-
tion so that the computational load per processor stays constant. This experiment
shows that the contribution of communication is small (in fact, the model shows
that it is about 150 times smaller than computation), and the model is in very
good agreement with the experiment.
We note that in the absence of communication our model reduces to the linear
“parallel computational efficiency” models used by Baker [9] and Koch [3] for
SN performance, in which parallel computational efficiency is defined as the frac-
tion of time a processor is doing useful work.
To validate the case with Nsweep = 1 and “comparable” contributions of communi-
cation and computation we had to use a subgrid size that is probably unrealistic
for actual production simulation purposes (5 x 5 x 1). Even with this size com-
putation outweighs communication by about a factor of 6. Figure 9 depicts a
weak scalability analysis on the SGI Origin 2000 for this size. The model-
experiment agreement is again very good.

Validation of cases where Tcomp = 0 involved the development of a new code to

11

30201000
0

20

40

60

80

Measured
Model
Tcomp from Model

Px + Py

T
im

e
(s

ec
o

n
d

s)

1614121086422
0e+0

1e-3

2e-3

3e-3

4e-3

5e-3

Measured
Model
Tcomp from Model

Px + Py

T
im

e
(s

ec
o

n
d

s)

Figure 8. Tcomp dominant. Figure 9. Tcomp ~ Tcomm. Nsweep = 1.
 Nsweep = 1. IBM RS/6000. SGI Origin.

simulate the communication pattern in SWEEP3D in the absence of computa-
tion. The code developed for this purpose simply implements a receive-west, re-
ceive-north, send-south, send-east communication pattern enclosed in loops that
initiate multiple waves. Figure 10 shows a very good agreement of the model
with the measured data from this code.

403020100
0e+0

1e-2

2e-2

3e-2

4e-2

Measured
Model

Px + Py

T
im

e
(s

ec
o

n
d

s)

3 02 01 00
1

2

3

4

5

M e a s u re d
M o d e l

P x + P y

T i
m e
(s e
c o
n d
s)

Figure 10. Tcomp=0. Nsweep = 1. Figure 11. Tcompdominant.
SGI Origin. . Nsweep = 10. SGI Origin.

5.2 Nsweep ~ (Px+Py)

As described in Section 4, sweeps of the domain generated by successive octants,

12

angle blocks, and k-plane blocks are pipelined, with the depth of the pipeline,
Nsweep, given by the product of the number of octants, angle blocks, and k-plane
blocks. We can select k-plane and angle block sizes so that Nsweep = 10, which, in
turn, balances the contribution of Nsweep and (Px+Py) for processor configurations
used in this work. In Figure 11 the comparison using a data size for which Tcomp

is dominant is presented, showing an excellent agreement with the measured
elapsed time. The case with no computation is in fact a succession of 10 sweeps
of the domain, with the communication overlap described by equation 6. Figure
12 shows a very good agreement with experimental data for this case.

An excellent model-experiment agreement is similarly shown in Figure 13, for a
subgrid size 5 x 5 x 1, which leads to balanced contributions of the communica-
tion and computation terms to the total elapsed time of SWEEP3D.

4030201000
0.0e+0

5.0e-3

1.0e-2

1.5e-2

2.0e-2

Measured
Model

Px + Py

Ti
m

e
 (

se
c

o
nd

s)

1614121086422
2.0e-3

3.0e-3

4.0e-3

5.0e-3

6.0e-3

7.0e-3

8.0e-3

Measured
Model
Tcomp from Model

Px + Py

Ti
m

e
 (

se
c

o
nd

s)

Figure 12. Tcomp=0. Nsweep = 10. Figure 13 Tcomp dominant.
CRAY T3E. Nsweep=10. SGI Origin.

5.3 Nsweep >> Px+Py

We present model-data comparisons using weak scalability experiments for cases
in which Nsweep is large compared with (Px+Py) in Figure 14 (6 x 6 x 360 sub-
grid; Tcomp ~ Tcomm) and in Figure 15 (16 x 16 x 1000 subgrid; Tcomp dominant).
The model is in good agreement with the measured execution times of
SWEEP3D in both cases.

5.4 Strong Scalability

In a “strong scalability” analysis, the overall problem size remains constant as the
processor configuration increases. Therefore, Tmsg and Tcpu vary from run to run
as the size of the problem size per processor decreases. In Figure 16 the com-

13

parison between measured and modeled time for the strong scalability analysis
out to nearly 500 processors on the problem size 50 x 50 x 50 is shown. The
agreement is excellent.

4030201000
0.3

0.5

0.7

0.9

1.1

1.3

1.5

Measured
Model

Px + Py

Ti
m

e
(s

ec
on

d
s)

161412108642
0.6

1.0

1.4

1.8

2.2

Measured
Model

Px + Py
Ti

m
e

 (
se

c
o

nd
s)

Figure 14. Tcomp ~ Tcomm. Figure 15. Tcomp dominant.
6 x 6 x 360. Nsweep large. 16 x 16 x 1000. Nsweep large.
CRAY T3E. Kb = 10. IBM RS/6000 SP.

3020100
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Measured
Model

Px + Py

Ti
m

e
 (

se
c

o
nd

s)

Figure 16. Strong Scalability. CRAY T3E.

6. Applications of the Model. Scalability Predictions.

Performance models of applications are important to computer designers trying
to achieve proper balance between performance of different system components.

14

ASCI is targeting a 100-TFLOPS system in the year 2004, with a workload de-
fined by specific engineering needs. For particle transport, the ASCI target in-
volves O(109) mesh points, 30 energy groups, O(104) time steps, and a runtime
goal of about 30 hours. With 5,000 unknowns per grid point, this requires about
40 TBytes total memory. In this section we apply our model to understanding the
conditions under which the runtime goal might be met.
Two sources of difficulty with such a prognosis are (1) making reasonable esti-
mates of machine performance parameters for future systems, and (2) managing
the SWEEP3D parameter space (i.e., block sizes). We handle the first by study-
ing a range of values covering both conservative and optimistic changes in tech-
nology. We handle the second by reporting results that correspond to the shortest
execution time (i.e., we use block sizes that minimize runtime).
We assume a 100-TFLOPS-peak system composed of about 20,000 processors (5
GFLOPS peak per processor, an extrapolation of Moore’s law). With this proc-
essor configuration, given the proposed size of the global problem, the resulting
subgrid size is approximately 6 x 6 x 1000.
Plots showing dependence of runtime with sustained processor speed and latency
for MPI communications are shown in Figures 17 and 18 for several k-plane
block sizes and using optimal values for the angle-block size. Table 1 collects
some of the modeled runtime data for a few important points: sustained proces-
sor speeds of 10% and 50% of peak, and MPI latencies of 0.1, 1, and 10 micro-
seconds. Our model shows that the dependence on bandwidth (1/G in LogGP) is
small, and as such no sensitivity plot based on ranges for bandwidth is presented.
Table 1 data assumes a bandwidth of 400 Mbytes/s.
One immediate observation is that the runtime under the most optimistic techno-
logical estimates in Table 1 is still larger than the 30-hour goal by a factor of two.
The execution time goal could be met if, in addition to these values of processor
speed and MPI latency (L+o in LogGP), we used what we believe to be an unre-
alistically high bandwidth value of 4 GBytes/s.
Assuming a more realistic sustained processor speed of 10% of peak (based on
data from today's systems), Table 1 shows that we miss the goal by about a factor
of six, even when using 0.1 V�03,� ODWHQF\�� �:LWK� WKH� VDPH�assumption for
processor speed, but with a more conservative value for latency (1 V���WKH�PRGHO
predicts that we are a factor of 6.6 off. In fact, our results show that the best way
to decrease runtime is to achieve better sustained per-processor performance.
Changing the sustained processor rate by a factor of five decreases the runtime by
a factor of three, while decreasing the MPI latency by a factor of 100 reduces
runtime by less than a factor of two. This is a result of the relatively low com-
munication/computation ratio that our model predicts. For example, using values
of 1 V� DQG� ����0%�VHF� IRU� WKH� FRPPXQLFDWLRQ� ODWHQF\� DQG� EDQGZLGWK�� DQG� D
sustained processor speed of 0.5 GFLOPS, the communication time will only be
20% of the total runtime.

15

100080060040020000
0

200

400

600

800

1000

1200

1400

10 k-planes per block
100 k-planes per block
500 k-planes per block

Sustained CPU Speed (MFLOPS)

Ru
nt

im
e

(h
ou

rs
)

100806040200
0

100

200

300

400

500

600

10 k-planes per block
100 k-planes per block
500 k-planes per block

Latency (usec)

Ru
nt

im
e

(h
ou

rs
)

Figure 17. Sensitivity of the billion-
point transport sweep time to sus-
tainedper-processor CPU speed on a
hypothetical 100-TFLOPS system as
projected by the model for several k-
plane block sizes and with MPI la-
tency = 15 s, and bandwidth = 400
Mbytes/s.

Table 1. Estimates of SWEEP3D Performance on a Future-Generation Sys-
tem as a Function of MPI Latency and Sustained Per-Processor Computing
Rate

10% of Peak 50% of Peak

MPI La-
tency

Runtime
(hours)

Amount of
Communication Runtime (hours)

Amount of
Communica-
tion

0.1 V 180 16% 56 52%
1.0 V 198 20% 74 54%
10 V 291 20% 102 58%

7. Conclusions

A scalability model for parallel, multidimensional, wavefront calculations has
been proposed with machine performance characterized using the LogGP frame-
work. The model accounts for overlap in the communication and computation
components. The agreement with experimental data is very good under a variety
of model sizes, data partitionings, blocking strategies, and on three different par-
allel architectures. Using the proposed model, performance of deterministic

Figure 18. Sensitivity of the billion-
point transport sweep time to MPI
latency on a hypothetical 100-
TFLOPS system as projected by the
model for several k-plane block and
with sustained per-processor CPU
speed = 500 MFLOPS, bandwidth =
400 Mbytes/s.

16

transport codes on future generation parallel architectures of interest to ASCI has
been analyzed. Our analysis showed that contrary to conventional wisdom, inter-
processor communication performance is not the bottleneck. Single-node effi-
ciency is the dominant factor.

8. Acknowledgements.

We would like to thank Ken Koch and Randy Baker of LANL Groups X-CM and
X-TM for many helpful discussions and for providing several versions of the
SWEEP3D benchmark. We thank Vance Faber and Madhav Marathe of LANL
Group CIC-3 for interesting discussions regarding mapping problem meshes to
processor meshes. We acknowledge the use of computational resources at the
Advanced Computing Laboratory, Los Alamos National Laboratory, and support
from the U.S. Department of Energy under Contract No. W-7405-ENG-36. We
also thank Pat Fay of Intel Corporation for help running SWEEP3D on the San-
dia National Laboratory ASCI Red TFLOPS system, and SGI/CRAY for a gen-
erous grant of computer time on the CRAY T3E system. We also acknowledge
the use of the IBM SP2 at the Lawrence Livermore National Laboratory.

References.

1. G. F. Pfister, In Search of Clusters – The Coming Battle in Lowly Parallel Computing,
Prentice Hall PTR, Upper Saddle River, NJ, 1995, pages 219-223.

2. L. Lamport, The Parallel Execution of DO Loops,” Communications of the ACM,
17(2):83:93, ?., 19?.

3. K. R. Koch, R. S. Baker and R. E. Alcouffe, "Solution of the First-Order Form of the
3-D Discrete Ordinates Equation on a Massively Parallel Processor," Trans. of the Amer.
Nuc. Soc., 65, 198, 1992.

4. W. D. Joubert, T. Oppe, R. Janardhan, and W. Dearholt, "Fully Parallel Global M/ILU
Preconditioning for 3-D Structured Problems," to be submitted to SIAM J. Sci. Comp.

5. J. Qin and T. Chan, “Performance Analysis in Parallel Triangular Solve,” In Proc. of
the 1996 IEEE Second International Conference on Algorithms & Architectures for Par-
allel Processing, pages 405-412, June, 1996.

6. M. T. Heath and C. H. Romine, “Parallel Solution of Triangular Systems on Distrib-
uted Memory Multiprocessors,” SIAM J. Sci. Statist. Comput. Vol. 9, No. 3, May 1988,

7. R. F. Van der Wijngaart, S. R. Sarukkai, and P. Mehra, “Analysis and Optimization of
Software Pipeline Performance on MIMD Parallel Computers,” Technical Report NAS-
97-003, NASA Ames Research Center, Moffett Field, CA, February, 1997.

8. R. E. Alcouffe, ``Diffusion Acceleration Methods for the Diamond-Difference Dis-
crete-Ordinates Equations,'' Nucl. Sci. Eng.{64}, 344 (1977).

9. R. S. Baker and R. E. Alcouffe, “Parallel 3-D SN Performance for DANTSYS/MPI on
the CRAY T3D, Proc. of the Joint Intl’l Conf. On Mathematical Methods and
Supercomputing for Nuclear Applications, Vol 1. page 377, 1997.

17

10. M. R. Dorr and E. M. Salo, “Performance of a Neutron Transport Code with Full
Phase Space Decomposition and the CRAY Research T3D,” ???

11. R. S. Baker, C. Asano, and D. N. Shirley, “Implementation of the First-Order Form of
the 3-D Discrete Ordinates Equations on a T3D, Technical Report LA-UR-95-1925, Los
Alamos National Laboratory, Los Alamos, NM, 1995; 1995 American Nuclear Society
Meeting, San Francisco, CA, 10/29-11/2/95.

12. M. R. Dorr and C. H. Still, “Concurrent Source Iteration in the Solution of Three-
Dimensional Multigroup Discrete Ordinates Neutron Transport Equations,” Technical
Report UCRL-JC-116694, Rev 1, Lawrence Livermore National Laboratory, Livermore,
CA, May, 1995.

13. E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport, Ameri-
can Nuclear Society, Inc., LaGrange Park, IL, 1993.

14. R. E. Alcouffe, R. Baker, F. W. Brinkley, Marr, D., R. D. O’Dell and W. Walters,
“DANTSYS: A Diffusion Acclerated Neutral Particle Transport Code,” Technical Report
LA-12969-M, Los Alamos National Laboratory, Los Alamos, NM, 1995.

15. D. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos, K. Schauser, R. Subramonian,
and T. von Eiken, “LogP: A Practical Model of Parallel Computation,” Communications
of the ACM, 39(11):79:85, Nov., 1996.

16. H. J. Wasserman, O. M. Lubeck, Y. Luo and F. Bassetti, “Performance Evaluation of
the SGI Origin2000: A Memory-Centric Characterization of LANL ASCI Applications,”
Proceedings of SC97, IEEE Computer Society, November, 1997.

17. C. Holt, M. Heinrich, J. P. Singh, E. Rothberg, and J. L. Hennessy, “The Effects of
Latency, Occupancy, and Bandwidth in Distributed Shared Memory Multiprocessors,”
Stanford University Computer Science Report CSL-TR-95-660, January, 1995.

