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Current technology trends favor hybrid architectures, typically
with each node in a cluster containing both general-purpose and
specialized accelerator processors. The typical model for
programming such systems is host-centric: The general-purpose
processor orchestrates the computation, offloading performance-
critical work to the accelerator, and data are communicated only
among general-purpose processors. In this paper, we propose a
radically different hybrid-programming approach, which we call
the reverse-acceleration model. In this model, the accelerators
orchestrate the computation, offloading work that cannot be
accelerated to the general-purpose processors. Data is
communicated among accelerators, not among general-purpose
processors. Our thesis is that the reverse-acceleration model
simplifies porting codes to hybrid systems and facilitates
performance optimization. We present a case study of a legacy
neutron-transport code that we modified to use reverse acceleration
and ran across the full 122,400 cores (general-purpose plus
accelerator) of the Los Alamos National Laboratory Roadrunner
supercomputer. Results indicate a substantial performance
improvement over the unaccelerated version of the code.

Introduction

Power considerations, limitations on pin bandwidth, and

cost constrain the performance achievable by general-

purpose processor cores. Consequently, a trend in the

computer industry is to construct hybrid systems,

computers containing a mixture of different core types—

either within a socket or across sockets. Some cores target

general-purpose workloads, which are characterized by

complex control flow, large working-set sizes, irregular

memory access patterns, relatively light floating-point

activity, and limited parallelism. Other cores target more

specialized workloads, typically those that exhibit

relatively infrequent branching, small working-set sizes,

regular memory access patterns, heavy floating-point

activity, and abundant parallelism. By running different

parts of an application on different processor cores, a

hybrid system can exploit the distinct advantages of each

type of core.

The primary challenge imposed by hybrid systems is

programmability—how best to assign work to processor

cores while taking into consideration the strengths and

weaknesses of each core type and the time needed to

move data among distinct memory regions. This

challenge is exacerbated when the hybrid system is

organized as a cluster comprising many types of cores,

many memory regions, and many data-transfer

mechanisms. The Roadrunner supercomputer [1], built by

IBM for Los Alamos National Laboratory, is the

quintessential example of a large, hybrid system of this

nature.

In this paper, we address the issue of programmability

by introducing a new approach to programming hybrid

systems. Rather than treating a hybrid system as a cluster

of communicating general-purpose cores with attached

special-purpose cores, our approach, the reverse-

acceleration model, treats a hybrid system as a cluster of

communicating special-purpose cores with attached

general-purpose cores. The advantages of this contrarian

world view are that it simplifies porting codes from non-

hybrid systems to hybrid systems and helps improve

performance by more naturally keeping the bulk of the

computation for an application on the high-speed,

special-purpose cores. To support these claims, we

implemented a library that enables a programmer to
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program to the reverse-acceleration model; we ported a

non-hybrid application to this library, and we ran the

resulting hybrid application on the Roadrunner

supercomputer at Los Alamos National Laboratory.

Performance results and implications are described later

in this paper.

Related work
The use of additional processing capabilities or

accelerators that supplement a main processor is not new.

Many recent investigations have analyzed the benefits

of using graphics processing units (GPUs) for high-

performance, general-purpose processing; field-

programmable gate arrays (FPGAs) to accelerate specific

operations; and single-instruction, multiple-data (SIMD)

processors to manipulate arrays and vectors at high

speed. To date, most work has concentrated on

optimizing small kernels on systems comprising only a

few nodes. A few notable exceptions include the use of

hybrid systems to improve the performance of the

production Weather Prediction and Forecasting (WRF)

code [2] from the National Center for Atmospheric

Research (NCAR) and the Nanoscale Molecular

Dynamics (NAMD) program [3] from the University of

Illinois at Urbana–Champaign (UIUC). In the former

study, the authors show that an order-of-magnitude gain

in performance can be obtained when accelerating the

WRF main computational kernel on a single node

containing an NVIDIA 8800 GTX GPU. This

improvement yields a 23% performance gain for the

application as a whole. In the latter study, the authors

explored the performance of NAMD on a system

containing 64 NVIDIA GPUs. As in the WRF study,

only part of NAMD was accelerated on the GPUs, but

this part represents a large fraction of the total run time.

Consequently, the use of GPU accelerators led to a more

than 5X performance improvement over using just the

host CPUs.

More recently, the Roadrunner supercomputer [1] has

enabled scientists to experiment with hybrid systems at

significantly large scales. By exploiting the Roadrunner

Cell Broadband Engine*** (Cell/B.E.) processors [4] as

computational accelerators, the vector particle-in-cell

(VPIC) code achieved a total processing rate of 0.374

Pflops [5] (using single-precision operations); the scalable

parallel short-range molecular dynamics (SPaSM) code

achieved 0.369 Pflops [6] (double precision); and the

PetaVision visual-cortex simulator achieved more than

1 Pflops (single precision), demonstrating the potential of

hybrid computing.

All of the aforementioned hybrid applications are

programmed using the traditional approach of having the

general-purpose cores manage the computation and

offloading performance-critical sections to non-

communicating accelerators. The closest approach to our

reverse-acceleration model is that used by the Cell/B.E.

versions of MPI (Message Passing Interface) developed

by Kumar et al. [7] and Krishna et al. [8]. That

programming model, like ours, assigns the main

computation work to the special-purpose cores. However,

it does not use the general-purpose cores at all. In

contrast, we see the general-purpose cores as playing an

important role in a hybrid computation, albeit a

subservient one to that of the special-purpose cores.

Another similar approach to ours is taken by Ohara et al.

[9] in their MPI microtask work. In the MPI microtask

model, the general-purpose core schedules work on the

special-purpose cores, but the special-purpose cores can

communicate with each other and run the bulk of the

computation. Kahle et al. [4] refer to this approach as the

computational acceleration model. A key problem with the

computational acceleration model is that a centralized

scheduler presents a performance bottleneck that limits

scalability. In contrast, in the reverse-acceleration model,

the accelerators drive the computation, so there is no need

for a centralized scheduler. Programs written with the

reverse-acceleration model can, therefore, scale

gracefully, which we demonstrate in the section

‘‘Evaluation,’’ later in this paper.

The difficulty of exploiting accelerators and the

flexibility of the Cell Broadband Engine Architecture has

resulted in the development of a number of hybrid

programming environments for the Cell/B.E. Cell

Superscalar (CellSs) [10] and the Accelerated Library

Framework (ALF) [11] both facilitate splitting programs

into units of code and data destined for either the general-

purpose or the special-purpose cores. CellSs uses

function annotations in C programs to specify what

should run on the special-purpose cores and what

dependencies exist in the execution. ALF takes a library

approach to simplifying hybrid programming by handling

common data-transfer patterns automatically. Newer

versions of IBM XL compilers for the Cell/B.E. support

automatic hybridization of OpenMP** programs [12].

That is, the programmer writes a single program with

parallelism specified using ordinary OpenMP directives

embedded in the code [13]. The compiler and run-time

system automatically designate threads to run on the

special-purpose cores and handle the transfer of data

between memory spaces. Hence, the same code can run

both on non-hybrid systems and on the hybrid Cell/B.E.

processor. Similarly, programming environments from

Gedae [14] and RapidMind [15] are designed so that

programs written using their tools can run on non-hybrid

and on multiple hybrid systems, including the Cell/B.E.

as well as GPUs and FPGAs.

While this paper describes our reverse-acceleration

implementation of Sweep3D [16] on the Roadrunner
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supercomputer, analytical performance modeling has

previously been used to evaluate the performance of

Sweep3D under a range of possible large-scale compute

node and accelerator configurations and using the

ClearSpeed** CSX600 as an example [17]. Also, a hybrid

Cell/B.E. version of Sweep3D was previously

implemented with the traditional approach of having the

general-purpose core offload compute-intensive work to

the special-purpose cores [18].

Reverse acceleration

The traditional approach to programming a hybrid

system is what we term the accelerator model. The

accelerator model treats the general-purpose cores as

main processors and the special-purpose cores as

accelerators whose role is to speed up pieces of the

application. In the accelerator model, the programmer

starts by writing code for the general-purpose cores. In a

cluster environment, this would normally be parallel code

in which the processes running on the general-purpose

cores exchange data via explicit message passing. The

programmer then identifies performance-critical routines

that are likely to see an improvement in performance by

running on the special-purpose cores and correspondingly

recodes those routines for the accelerators.

The enticement of the accelerator model is that

unmodified applications can run immediately.

Performance improvements made by offloading compute-

intensive routines to the accelerator can be implemented

incrementally. Unfortunately, there are two problems

inherent in the accelerator model. First, accelerated

routines require structural changes from the original

code. While the unaccelerated routine is sequential

(though possibly forming a part of a larger, parallel

application) the accelerated routine is data or task

parallel and may utilize explicit communication. After

parallelizing the accelerated routine, the routine then

needs to be augmented to distribute data to the special-

purpose cores and aggregate the results. Second, the

process of refining performance-critical routines may

result in wasted effort. That is, after the programmer has

rewritten a routine for an accelerator, it may turn out

that the performance gained from the improved

computational performance may be dominated by the

cost of moving data between the general-purpose core

and the special-purpose core.

To address the problems of restructuring code for

accelerators and the difficulty of determining suitable

routines for acceleration, we propose turning the

accelerator model upside-down. Instead of treating a

hybrid system as a cluster of communicating general-

purpose cores, each with an attached accelerator for

offloading sequential, compute-intensive work, one can

treat a hybrid system as a cluster of communicating, high-

speed, special-purpose cores, each with an attached

general-purpose core for offloading control, memory, or

I/O (input/output) intensive work. We call this approach

the reverse-acceleration model.

Figure 1 illustrates how a programmer views the system

in the accelerator model and in our reverse-acceleration

model. In both cases, the hardware is the same; what

changes is the abstraction presented to the programmer.

In the accelerator model [Figure 1(a)], the general-

purpose cores manage the computation, sending

compute-intensive work to the special-purpose cores

(labeled ‘‘SP’’ in the figure) and aggregating the results. In

the reverse-acceleration model [Figure 1(b)], the special-

purpose cores manage the computation, sending control-
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Figure 1

Abstractions provided by the (a) accelerator model and the (b) reverse-acceleration model. (Sub: subroutines; SP: special purpose.)
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intensive work to the general-purpose cores and

aggregating the results. In the accelerator model, general-

purpose cores communicate with other general-purpose

cores, while the special-purpose cores communicate only

with their associated general-purpose cores. In the

reverse-acceleration model, special-purpose cores

communicate with other special-purpose cores, while the

general-purpose cores communicate only with their

associated special-purpose cores.

Note that Figure 1 presents only logical views of a

hybrid system. In practice, the underlying hardware need

not exactly mimic either Figure 1(a) or Figure 1(b). For

instance, there may be any number of special-purpose

cores associated with each general-purpose core; there

may be any number of nodes in the system; there may be

any number of processor sockets per node; and any

number of cores may be packaged onto a single socket. In

some implementations, general-purpose and special-

purpose cores may both be packaged onto the same

socket. Broadly speaking, though, the accelerator model

presents the programmer with a lower-level abstraction

(i.e., closer to the underlying hardware), while the reverse-

acceleration model presents the programmer with a

higher-level abstraction (i.e., closer to a simpler, non-

hybrid system).

There are two advantages to the reverse-acceleration

model: programmability and ease of performance

optimization. The reverse-acceleration model aids

programmability by enabling non-hybrid, parallel codes

to run immediately on the high-speed special-purpose

cores while delaying performance optimization until

afterwards. The programming approach that we have

found to work well proceeds as follows:

1. Get the program minimally running on the special-

purpose cores. This may involve scaling down the

problem size to fit in on-chip memory and enabling

code overlays so that larger codes can run. The goal

in this step is for the program to reach a baseline

state as rapidly as possible.

2. Generalize the data motion of the program to match

the capabilities and limitations of the special-purpose

cores. This may involve, for example, performing

explicit bulk data transfers between on-chip and off-

chip memory. The goal in this step is for the program

to run with full-sized inputs.

3. Optimize computation in the program to take

advantage of the capabilities and limitations of the

special-purpose cores. This may involve, for example,

vectorizing loops or employing heavy

multithreading. The goal in this step is for the

program to run as fast as possible.

The second advantage of the reverse-acceleration

model is that it facilitates performance optimization.

Under the accelerator model, a programmer must identify

functions that may be able to exploit the special-purpose

cores, port those functions to the special-purpose cores,

modify the code to transfer program data to the special-

purpose cores and the results back from the special-

purpose cores, and finally measure the performance and

determine whether offloading those functions to the

special-purpose cores was in fact beneficial, reverting the

code to its prior state if not. In a sense, the accelerator

model discourages function offloads because only

functions that are very likely to see a performance

improvement are worth the additional coding effort

needed to manage the extra data transfers.

The reverse-acceleration model, in contrast, encourages

running code on the special-purpose processors. Because

all of the program’s code and data are already on the

special-purpose cores before the performance-

optimization process begins, no additional programming

overhead is needed to ensure that functions running on

the special-purpose cores can access their data.

Performance optimization follows the more traditional

approach of profiling an execution, determining which

functions took the most time and optimizing the

performance of those functions. There is no need to guess

which functions are likely to run fast or slow, as actual

measurement data are available.

Consider also the role of idle time in a computation on

a hybrid system. In the accelerator model, the (fast)

special-purpose cores lie idle until a general-purpose core

offloads work to them. In the reverse-acceleration model,

it is instead the (slow) general-purpose cores that lie idle

waiting for work assignments from the special-purpose

cores. This is another point in favor of the reverse-

acceleration model: It is better to keep the cores with

higher compute rates busy than those with lower

compute rates.

A downside of the reverse-acceleration model is that it

imposes some specific hardware requirements that are

not met by all available special-purpose cores. It requires

that the special-purpose cores be capable of running

independent threads of control, that they have direct

access to some amount of private memory (albeit not

necessarily as large as what the general-purpose cores

have access to), and that they have some mechanism for

bidirectional communication with a general-purpose core.

Preferably, they also have the ability to communicate

without the involvement of a general-purpose core and

some I/O capability, but these features are not strictly

required. Many current and soon-to-be-released special-

purpose processors already support these requirements.

While this paper focuses on the Cell/B.E. processor [4],

other processors such as the Intel Larrabee [19] and the
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Tilera TILE64** [20] should also be able to implement the

reverse-acceleration model in a straightforward manner.

Implementation

To demonstrate the viability of the reverse-acceleration

model, we implemented a messaging library that presents

the programmer with the abstraction that the special-

purpose cores can communicate directly with each other

across an entire cluster.

Roadrunner

The testing ground for our reverse-acceleration model is

the Los Alamos National Laboratory Roadrunner

supercomputer [1], which at the time of this writing is not

only the world’s largest hybrid system but also the

world’s fastest system of any type, according to the

TOP500** list of supercomputers [21].

The combination of flexible general-purpose (AMD

Opteron** [22]) and high-performing special-purpose

(IBM PowerXCell* 8i [23]) processors is the foundation

of the Roadrunner system. The goals of the design were

to provide high computational performance within

acceptable cost and power budgets, and the use of hybrid

processor technology was found to be a suitable approach

to meet those constraints.

Although Roadrunner contains an equal number of

conventional general-purpose microprocessor cores and

special-purpose accelerators, the vast majority of the

available performance results from the special-purpose

accelerators, the PowerXCell 8i processors. These provide

more than 95% of the peak performance and more than

85% of the peak memory bandwidth. The entire system

has a peak performance of 1.38 Pflops (double precision;

2.91 Pflops single precision). In addition, the high

processing efficiency that is possible for many

applications results in immense achievable performance.

In May 2008, Roadrunner was the first system to achieve

over 1 Pflops sustained performance on the industry-

standard Linpack benchmark [24].

The full system consists of 3,060 compute nodes that

are arranged into 17 compute units (CUs). The 180 nodes

within each CU are interconnected in a full fat-tree

topology [25] using a single 288-port InfiniBand** 4X

double-data-rate (DDR) switch [26]. CUs are

interconnected using a further eight switches organized as

a 2:1 reduced fat tree. The switch fabric can support up to

24 CUs without alteration, although the currently

installed system contains only 17, as shown in Figure 2.

Each InfiniBand switch contains 36 crossbar chips. The

intra-CU switches are arranged into two levels of

crossbars (one containing 24 and one containing 12), and

the inter-CU switches are arranged into three levels of 12

crossbars.

A Roadrunner compute node, known as a triblade,

consists of three blades, as shown in Figure 3. One blade,

an IBM LS21 [27], contains two dual-core AMD Opteron

processors, and the other two blades, both IBM QS22s

[28], each contain two PowerXCell 8i processors [23]. The

PowerXCell 8i sees a 7X improvement in double-

precision floating-point performance over the original

Cell/B.E. processor (used in the Sony Playstation*** 3

[29]), which has been extensively analyzed for scientific

computation, for example, by Williams et al. [30, 31]. An

expansion card, taking the space of a fourth blade, serves

to interconnect the three compute blades as well as

connect to other triblades through an InfiniBand host

channel adapter (HCA) [26]. The peak performance of a

node is 449.6 Gflops (double precision).

The amount of memory on the Opteron blade (16 GB)

equals the total amount of memory on both the

PowerXCell 8i blades (8 GB apiece). The Opteron

processors are clocked at 1.8 GHz with each core able to

issue two double-precision floating-point operations per

cycle, resulting in a peak of 14.4 Gflops per LS21 blade.

Each core has a 64-KB L1 data cache, a 64-KB L1

instruction cache, and a 2-MB L2 cache. The

PowerXCell 8i processors are clocked at 3.2 GHz and

contain one IBM PowerPC* processor element (PPE) and

eight synergistic processor elements (SPEs). The PPE has

a traditional cache-based memory hierarchy consisting of

a 32-KB L1 data cache, a 32-KB L1 instruction cache,

and a 512-KB L2 cache. It can issue two double-precision

floating-point operations per cycle.
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Configuration of Roadrunner 17 compute units (CUs) intercon-

nected with InfiniBand.
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Each SPE contains a SIMD processing unit that can

issue a total of four double-precision or eight single-

precision floating-point operations per cycle. Thus, the

peak performance per the PowerXCell 8i is 108.8 double-

precision Gflops, of which 102.4 Gflops are from the

eight SPEs. A corollary is that the PPE core is too

underpowered to use for serious computation; it best

serves as a controller for the SPEs. A key characteristic of

the SPE is that it can directly address only 256 KB of

memory. This high-speed memory, known as local store,

takes the place of a conventional cache architecture. Main

memory, shared with the PPE, can be accessed only via

explicit direct memory access (DMA) transfers to or from

local store.

Roadrunner has a deep communication hierarchy.

Within a PowerXCell 8i, the SPEs, PPE, and other logic

are connected via an arbitrated bus known as the element

interconnect bus (EIB). The EIB contains four rings (two

running clockwise and two counterclockwise) and

supports an aggregate peak bandwidth of 204.8 GB/s,

although a single transfer cannot exceed 25.6 GB/s [32].

The two PowerXCell 8i sockets on a QS22 blade are

directly connected via a FlexIO interface [33], which, as

configured in the Roadrunner system, provides an

aggregate peak bandwidth of 25 GB/s, with single

transfers limited to 6.25 GB/s. Within a triblade, each of

the QS22 blades is connected to the LS21 blade via two

PCI Express** (PCIe**) x8 connections [34], as shown in

Figure 3. The PCIe buses from the Cell/B.E. blades are

converted to HyperTransport** for connection to the

Opteron processors using two Broadcom** HT2100 I/O

controllers. The HT2100 has a single HyperTransport x16

port and three PCIe x8 ports. Each QS22 blade has a

direct connection to an Opteron socket on the LS21,

providing a peak bandwidth between each PowerXCell 8i

processor and its associated Opteron core of 2 GB/s in

each direction. The third port on one of the HT2100

controllers connects a Mellanox** 4x DDR InfiniBand

HCA. Connectivity between triblades, therefore, exhibits

a peak bandwidth of 2 GB/s in each direction.

Cell Messaging Layer

To provide the illusion that Roadrunner is a ‘‘sea of

SPEs’’ and enable it to be programmed as such, we

developed a software messaging layer called the Cell

Messaging Layer (CML) [35] that enables Roadrunner to

be programmed using the reverse-acceleration model.

CML additionally runs on homogeneous Cell/B.E.

clusters (i.e., those containing only Cell/B.E. processors

without associated general-purpose processors) including,

for example, clusters of IBM QS21 Cell/B.E. blades [36]

interconnected via InfiniBand [26] and clusters of Sony

Playstation 3 gaming consoles [29]. CML is freely

available for download from SourceForge (http://

cellmessaging.sourceforge.net/).

CML implements a subset of the MPI messaging layer

[37] as an SPE library. MPI is the de facto standard for

programming parallel computers and workstation

clusters. Implementing an SPE version of MPI, therefore,

introduces hybrid programming to a large number of

scientific application developers, who can now focus their

efforts on Cell/B.E.-specific optimizations rather than on
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Illustration of a Roadrunner compute node (triblade). (DP: double

precision; SPE: signal processing element; PPE: IBM PowerPC

processor element; PPU: PowerPC processor unit; DDR: double

data rate.)
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implementing basic communication and synchronization

mechanisms.

The implementation goal is initially to provide the most

useful MPI functions and incrementally introduce

additional functions as needed. The functions currently

implemented are MPI_Abort(), MPI_Allreduce(),

MPI_Barrier(), MPI_Bcast(), MPI_Comm_get_attr(),

MPI_Comm_rank(), MPI_Comm_size(), MPI_Finalize(),

MPI_Init(), MPI_Recv(), MPI_Reduce(), MPI_Send(),

MPI_Wtime(), and MPI_Wtick(). The PMPI profiling

interface is supported for all of those functions. However,

the MPI wildcard receive, MPI_ANY_SOURCE, is not

supported, and only a limited number of values can be

used as message tags (a configuration-time option).

MPI_Send() provides no buffering, so it is identical to

the MPI_Ssend() function.

Although the MPI interface defines hundreds of

functions, it is not an issue to include all of them in an

SPE library, even considering that an SPE has access to

only 256 KB of on-chip memory. The key is that only

functions that are actually invoked take up any space in

local store. CML is designed so that each object file in the

library provides only a small number of functions. At

program link time, the linker ignores unreferenced

objects. Because most MPI programs utilize only a tiny

fraction of the functions that MPI provides, CML needs

to reserve only a small amount of local store for itself.

For example, initialization, finalization, and the two

point-to-point communication functions together take

up only 5 KB (2%) of the local store. Programs with

severe memory-capacity constraints can sacrifice

communication performance for available local store and

demand-load CML functions using code and data

overlays.

To further support the reverse-acceleration model,

CML provides a few features that are not part of MPI.

The most important of these is support for a Remote

Procedure Call (RPC) mechanism for invoking functions

on the general-purpose processor and receiving the

results. In fact, on Roadrunner, CML not only enables

SPEs to invoke functions on their associated PPE but also

allows PPEs to invoke functions on their associated

Opteron processor. These RPC invocations can be

chained together so an SPE can invoke a function on an

Opteron processor indirectly via a PPE function. Some

examples of how we have used the CML RPC mechanism

include having SPEs call the PPE malloc() function to

allocate main memory and receive a pointer to the

allocated memory and having SPEs call I/O functions on

the Opteron processors to manage the I/O files of a

program.

The CML implementation is designed to run extremely

fast. It takes advantage of a technique called receiver-

initiated message passing [35] to reduce the number of

internal synchronizations needed to implement message

passing semantics atop RDMA hardware. Essentially, the

receiver transmits a message request to the sender, who

transfers its data directly into the receiver-specified buffer.

SPE-to-SPE communication within a Cell/B.E. socket or

between FlexIO-connected Cell/B.E. processors on a

single blade proceeds with absolutely no PPE

involvement. This implies not only that serialization at

the PPE interface is eliminated but also that the full

bandwidth of the EIB is available to concurrently

communicating pairs of SPEs. In contrast, programs

using the accelerator model tend to push work from the

PPE to each underlying SPE; each SPE computes

independently; and the results are sent from all SPEs over

a single interface back to the PPE. The EIB is

underutilized in this usage model. By facilitating intra-

socket and intra-blade communication, the reverse-

acceleration model encourages exploiting the high-speed

short-range networks.

Extreme scalability is another feature of the CML

implementation. CML follows an Internet gateway-style

approach to enable large numbers of peers to

communicate without per-process memory demands

growing with system size. That is, an SPE needs to know

how to route messages only to its associated PPE, a PPE

needs to know how to route messages only to its

associated SPEs and Opteron processor, and an Opteron

processor needs to know how to route messages only to

other Opteron processors and its associated PPE. Each

SPE holds an array of communication states that enable

it to communicate with all other local SPEs (i.e., those on

the same Cell/B.E. or same blade) plus one additional

array element for communicating with all non-local SPEs.

Each PPE, which is a relatively slow core, is responsible

merely for forwarding messages between its associated

SPEs and Opteron processor over the PCIe bus using the

IBM Data Communication and Synchronization (DaCS)

library. Finally, each Opteron processor uses MPI to

forward messages to the remote Opteron processor

associated with the target SPE.

The following is a more detailed technical description

of the CML internal structure. There are two main cases

for point-to-point communication: Either the sending and

receiving SPEs reside within the same address space (a

socket or a blade) or they reside within different address

spaces. In the first case, upon executing an MPI_Recv(),

the receiver puts a message descriptor (the target address,

message length, send/receive completion flags, and

other such data: 64 bytes total) into a per-SPE descriptor

array in the sender’s local store. The receiver then spins

waiting for the send-completion flag to be set. Upon

executing an MPI_Send(), the sender reads the message

descriptor, puts the message data to the target address,

and performs a fenced Put of the send-completion flag.
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(Fencing imposes order between sets of RDMA

transfers.) The receiver sees that the send-completion flag

has been written and, therefore, exits its MPI_Recv().

The second case, communication between SPEs in

different address spaces (separate blades), is similar but is

complicated by the fact that multiple SPEs feed into a

single PPE. (Only the PPE connects to the outside world.)

Upon executing an MPI_Recv(), the receiver first has to

wait for a free slot to become available in the send queue

of its PPE. The receiver then puts a message descriptor

into that slot and starts spinning on the associated

completion flag. The sender follows analogous steps.

Upon executing an MPI_Send(), it first has to wait for a

free slot to become available in the send queue of its PPE

after which it puts the data into that slot. In Roadrunner,

the PPE uses the DaCS asynchronous send/receive calls

to transfer the message to its associated Opteron

processor. The Opteron processor uses the MPI

asynchronous MPI_Isend() and MPI_Irecv() calls to

transfer the data to the receive-side Opteron processor,

via either shared memory or the InfiniBand network,

depending on whether the communication is intra-node

or inter-node. The receive-side Opteron processor uses

the DaCS asynchronous send/receive calls to transfer the

message to the target PPE. The PPE uses one of two

mechanisms to transfer the message to the receiving SPE:

programmed I/O [i.e., memcpy()] for small messages

(�128 bytes) and an SPE-initiated RDMA Get for large

messages.

A prior publication presents further details on the data

structures and communication mechanisms used by CML

for both point-to-point and collective communication

[35].

Evaluation
It is difficult to quantify precisely the productivity

improvements gained by programming hybrid systems

using the reverse-acceleration model instead of the more

traditional accelerator model. We present the following as

anecdotal evidence that the reverse-acceleration model is

easy to use. A first-year Ph.D. student managed to port

both a molecular dynamics code [38] and a lattice

Boltzmann code [39] to the Roadrunner architecture

using CML in approximately one day apiece as part of an

effort to introduce a performance-profiling mechanism to

CML-based applications [40]. That is, he quickly

completed Step 1 of the methodology presented in the

section on reverse acceleration, leaving additional time to

work on the CML-independent Steps 2 and 3. Sweep3D,

which we describe in detail below, was ported to the

Cell/B.E. concurrently with the development of CML,

which renders meaningless any statement of the time

involvement. We can say, however, that the port was

straightforward, followed the methodology presented in

the section on reverse acceleration, and required no

rethinking of the basic computational structure of

Sweep3D.

The focus of our evaluation is not on the productivity

gains achievable by using the reverse-acceleration model

but rather on quantifying the performance of our

implementation of the reverse-acceleration model, CML,

and demonstrating that applications written to the

reverse-acceleration model can observe good performance

even on extreme-scale hybrid systems. In this section,

we describe an MPI application that we ported to

Roadrunner and present the performance of both that

application and the underlying software (CML).

Sweep3D

We focus on the Sweep3D application kernel [16] to

motivate the previously described application model.

Sweep3D is a deterministic implementation of discrete-

ordinates neutron transport. (See Hoisie et al. [41] for a

detailed description of the algorithm and thorough

analysis of Sweep3D performance characteristics.) The

major field to be calculated is the particle flux at spatial

point (x, y, z) with energy E traveling in direction X. The

numerical solution of the transport equation involves

an iterative procedure that has been referred to as the

source iteration. The vast majority of the time is spent in a

‘‘sweep’’ computation, which involves calculations

iterating through the spatial coordinates for each discrete

angle. This class of problems is referred to as wavefront

algorithms due to the progression of the calculation as

a wave over the spatial domain. Although Sweep3D

utilizes a 3D global domain (I 3 J 3 K), the program is

parallelized using a 2D domain decomposition. Two

spatial dimensions (I and J) are partitioned into

subdomains across a Px by Py processor grid. The third

dimension (K) is processed in blocks for better pipelining

of the computation. The basic problem is broken down

spatially into data cells. At a given angle, the flux for each

data cell is calculated from the flux at each of six data-cell

faces and the center. This calculation is dependent on

the incoming flux values from other adjacent data cells.

These dependencies constrain the amount of parallelism

that can be exploited. The available parallelism is easily

seen in a dependency diagram (Figure 4). In Figure 4, the

black data cells have finished calculating because they

have no incoming dependencies; the red data cells are

waiting for flux inputs; the blue data cells have yet to start

processing this angle. Arrows indicate the dataflow: A

data cell cannot calculate its flux value until all of its

upstream neighbors have calculated their flux values. The

maximum available parallelism for a single wavefront in

the configuration illustrated in Figure 4 is four, achieved

when all data cells on the major diagonal are processing

angle X.
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The Sweep3D algorithm does not map easily to a

hybrid system. When programming using the accelerator

model, performance hotspots of an application are

broken off and sent to the accelerator. The challenge is in

propagating the flux values, which requires interprocess

communication. An early, accelerator-model version of

Sweep3D was shown to achieve improved performance

on a single Cell/B.E. processor [18]. In that work, the PPE

is used as a task controller and the work is decomposed

into single I lines plus their dependencies and sent down

to the SPEs for processing. The inner I loop of the I/J/K

loop is accelerated as the hotspot, and the results of that

loop are returned to the PPE. Double buffering is used to

mitigate the cost of the transfers between the SPEs and

main memory. This method works for a single socket but

delegates a large amount of work to the PPE, which

becomes the performance bottleneck [18].

In contrast to that earlier effort to produce a Cell/B.E.

version of Sweep3D, our implementation uses the reverse-

acceleration model and, thereby, manages to retain the

data decomposition used in the original, non-hybrid

Sweep3D. While the data decomposition of the original

program is known to yield good performance on non-

hybrid parallel systems, it is tricky to use the same data

decomposition when programming using the accelerator

model. CML and the reverse-acceleration model facilitate

using a known-good data decomposition for Sweep3D,

and this is the key to the performance and scalability of

our implementation.

In our implementation, each SPE has a unique MPI

rank and can communicate via CML to all other SPEs

not only within a socket but across all of the 97,920 SPEs

of the Roadrunner. With all of the Sweep3D code

running on the SPEs, the algorithm is constrained only by

the algorithmic dependencies and the communication

costs. As with the accelerator-model version of Sweep3D,

our version was optimized for the Cell/B.E. architecture

[42], taking advantage of the SPE SIMD instructions and

tuning for dual issue.

Table 1 summarizes the qualitative differences between

the accelerator version of Sweep3D and our reverse-

acceleration version.

Ensuring that the key data structures of Sweep3D fit in

the SPE local store was a challenge. It is not possible to

fit a subgrid much larger than 93 93 9 in the local store,

so in Step 2 of the methodology presented in the section

on reverse acceleration, we had to modify the code to

stage pieces of the subgrid from main memory to the local

store. The resulting SPE executable’s footprint in the

local store totals 55.0 KB, which represents 49.8 KB of

code (text), 0.8 KB of initialized data (data), and 4.4 KB

of uninitialized data (text, data, and bss). These

numbers include both Sweep3D proper and CML. The

remaining 201 KB of local store is allocated as a staging

area for Sweep3D subgrids.

Performance

We present performance in a bottom-up fashion.

Specifically, we start by stating the theoretical peak

�

Figure 4

Dataflow in a wavefront algorithm.

Table 1 Key differences between the two hybrid versions of Sweep3D.

Attribute Accelerator version [18] Reverse-acceleration version [43]

Code running on SPEs Inner I loop Entire program

Communication type No inter-SPE communication Intra-socket, inter-socket, and cross-cluster SPE

communication

Data movement Volume (I line and dependencies) moved twice Surfaces moved directly to the SPEs that require them

PPE involvement Controls SPE workers; manages data Minimal involvement and only internal to CML

message-passing library

Scale explored (cores) Single socket (1 PPE þ 8 SPEs) Full Roadrunner (12,240 Opteron cores þ 12,240

PPEs þ 97,920 SPEs)
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performance of the hardware. Next, we show

performance measurements of the lowest-level software

communication layers, and then we present the CML

performance. After completing the presentation of

communication performance, we contrast the single-

socket performance with the accelerator and reverse-

acceleration versions of Sweep3D that were described in

the previous section. Finally, we provide Sweep3D scaling

data to demonstrate how well the reverse-acceleration

model can perform at an extreme scale.

Primitive performance

Figure 5 plots the data rates achievable across each core

boundary. Horizontal lines indicate the theoretical peak

data rate across each type of interconnect in the

Roadrunner system: the EIB [32] for intra-cell SPE-to-

SPE communication (i.e., within a cell socket), FlexIO

[33] for inter-cell SPE-to-SPE communication (i.e.,

between cell sockets on the same blade), the memory

interface controller (MIC) [32] for SPE-to-PPE

communication, the PCIe bus for PPE-to-Opteron

communication [34], and the InfiniBand network for

Opteron-to-Opteron communication [26]. Points on

curves represent measured data. Memory flow controller

(MFC) DMA commands [43] are used for SPE-to-SPE

and SPE-to-main memory data transfers. These

commands provide a Put/Get interface and were,

therefore, measured as the steady-state time to perform a

fenced Put [mfc_putf()] and wait for it to complete

locally [mfc_read_tag_status_all()]. The IBM DaCS

library is used to transfer data between a PPE and its

associated Opteron processor [44]. Although DaCS

supports both Put/Get [dacs_put()/dacs_get()] and

send/receive [dacs_send()/dacs_recv()] interfaces, we

measured only the latter because the implicit flow control

and buffer management are particularly useful for

constructing a higher-level communication interface such

as that used by CML. Performance was measured as half

the roundtrip time to transfer a message, including

waiting for local completion with dacs_wait(). Finally,

MPI—specifically the Open MPI implementation [45]—is

used for Opteron-to-Opteron communication, both

within and across nodes. We measured this performance

as half the roundtrip time to transfer a message between

two nodes using MPI_Send() and MPI_Recv(). Figure 5

also tabulates, on the right-hand side, measurements of

the time needed to transmit a minimal-sized message

across each of the different interconnects.

The data in Figure 5 indicate that the per-link

performance bottleneck is the rate at which data can be

transferred between the PPE and the Opteron processor,

especially at message sizes between 2 and 16 KB. Also, all

of the SPE-initiated Put operations take relatively little

time to initiate—less than 100 cycles at 3.2 GHz—but

because these are Put operations, not send operations,

they do not include the time needed for flow control,

buffer management, or receiver notification and,

therefore, underestimate communication time in the

context of application execution.

CML internally uses the MFC DMA commands,

DaCS, and MPI to communicate across the various

Roadrunner interconnects but presents the application

programmer with true SPE-to-SPE messaging semantics.

That is, one SPE can send a message using MPI_Send(),

and another SPE—located anywhere else in the system—

can receive the message with MPI_Recv(). CML takes

care of using the appropriate transfer mechanisms (MFC

DMA, DaCS, or MPI) based on the relative locations of

the SPEs: the same Cell/B.E. processor, different

Cell/B.E. processors on the same QS22 blade, Cell/B.E.

processors on different QS22 blades in the same node, or

Cell/B.E. processors in different nodes. CML implements

buffer management to ensure that multiple messages sent

to the same receiver do not overwrite each other. It

provides flow control to stall a sender if the receiver lags

behind and runs out of places to store incoming messages.

Finally, per the MPI semantics [37], it supports selective

message reception based on the sender’s rank and a

program-specified message tag. We now examine the

performance implications of providing those ease-of-

programming features.
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Performance of the various lower-level communication layers in

the Roadrunner.
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Figure 6, which can be contrasted with Figure 5,

presents the data rates measured between different pairs

of SPEs while performing roundtrip message transfers

using CML. Note however that the x-axis in Figure 6 has

less range than that in Figure 5. This is because we

measured only power-of-2 message sizes, and a 128-KB

message is the largest that fits alongside the benchmark

program in the 256 KB of local store in an SPE.

Both within a Cell/B.E. chip and between Cell/B.E.

chips on the same blade, the maximum data rate achieved

is close to the theoretical maximum for the hardware.

However, inter-blade communication is noticeably slower

than the bottleneck rate, that of the PCIe bus. The

primary reason for this is that DaCS and Open MPI both

have high startup costs for message transfers, as indicated

by the minimum-latency numbers shown on the right side

of Figure 5. Because an inter-blade message transfer

incurs two DaCS latencies (PPE-to-Opteron on the send

side and Opteron-to-PPE on the receive side) plus one

Open MPI latency (Opteron-to-Opteron), this accounts

for 9.24 ls of the 11.77 ls reported. The two SPE–PPE

synchronizations (send and receive side) account for most

of the remainder.

Because the startup costs are so high, the number of

DaCS and Open MPI transfers performed per CML

message needs to be kept to a minimum. Consequently,

CML cannot feasibly overlap the PPE-to-Opteron,

Opteron-to-Opteron, and Opteron-to-PPE transfers. This

lack of overlap is the source of the low inter-blade data

rate observable in Figure 6. The implication is that the

reverse-acceleration model, like the accelerator model,

does not shield programmers from having to consider

locality implications when programming a hybrid system.

However, because the reverse-acceleration model presents

an interface that resembles non-hybrid programming, a

programmer can quickly port a non-hybrid program to a

hybrid system in a locality-oblivious fashion and then

incrementally optimize the code to make it aware of

locality. To aid in this process, CML provides an

additional CML-specific MPI communicator called

MPI_COMM_MEM_DOMAIN that enables

communication—in particular, collective-communication

operations—to be restricted to a set of SPEs that share

a memory space (either a single Cell/B.E. chip or the two

Cell/B.E. chips on a QS22 blade, depending on how

the program is run).

Application performance

As discussed earlier, we produced a hybrid version of the

Sweep3D neutron-transport code using CML and the

reverse-acceleration model, while Petrini et al. [18]

produced a hybrid version of the same program using the

MFC DMA commands and the accelerator model.

Consequently, Sweep3D can serve as a comparison point

for the performance of the reverse-acceleration model

versus the accelerator model. We have to limit this

comparison to a single cell, as this is all Petrini et al. had

access to at the time of their study (which predates our

work). To make the comparison fair, we ran with the

same problem (50 3 50 3 50 data cells, 10 k-planes, 3

angles) that Petrini et al. used and the same version of the

Cell/B.E. processor (the original implementation, not the

enhanced PowerXCell 8i that is used in Roadrunner).

While the Petrini et al. accelerator-model Sweep3D

performed 10 iterations in 1.3 seconds, our reverse-

acceleration-model Sweep3D performed the same number

of iterations in only 0.37 seconds—a 72% reduction in run

time. Petrini et al. note that their accelerator-model run

time is dominated by DMA speed. A total of 0.7

seconds—about twice our total execution time—is spent

transferring data between the local store and main

memory. The key to the improved performance of our

implementation is that the reverse-acceleration model

facilitates using high-speed data transfers among local

stores in place of slower transfers between local store and

main memory, which are simpler to implement when

programming to the accelerator model.

As a final test of the reverse-acceleration model, we

examine how well our version of Sweep3D scales and how

its performance compares to that of the original, non-

hybrid version of the program. Scalability is a key

challenge for Sweep3D on any system: It communicates
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Performance of the Cell Messaging Layer. (EIB: element inter-

connect bus.)
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using small messages; it exhibits a very high ratio of

communication to computation; and, even on an

idealized system with infinitely fast communication, there

are algorithmic limitations on the available parallelism, as

illustrated previously by Figure 4. With the input deck we

used for our scalability study—5 3 5 3 400 data cells per

SPE, 6 angles, and 10 k-planes—each SPE performs only

approximately 60 ls of computation between receiving

two 2,400-byte messages and sending two 2,400-byte

messages. Hence, Sweep3D is an extreme test of the CML

communication performance and greatly stresses the

ability of the reverse-acceleration model to deliver

performance.

We ran Sweep3D in weak-scaling mode, meaning that

we increased the problem size proportionally to each

increase in node count. Figure 7 plots the execution time

of an iteration of Sweep3D as a function of the number of

nodes (i.e., Roadrunner triblades) used. As that figure

indicates, our version of Sweep3D scales smoothly all the

way to 3,060 nodes, which represents 97,920 MPI ranks

(or 122,400 total cores when including the Opteron

processors and PPEs). For comparison purposes, we also

ran the original, non-hybrid version of Sweep3D with the

same problem size per node and plotted its performance

alongside our hybrid version of Sweep3D. As Figure 7

demonstrates, running Sweep3D on the SPEs

approximately doubles application performance relative

to running it on the Opteron processors. This is even

considering that only the Opteron processors have direct

access to the InfiniBand network; an SPE-initiated

message must traverse the EIB and PCIe buses and be

picked up by an Opteron processor before it can be sent

to another node.

The conclusions to draw from Figure 7 are as follows:

1. The reverse-acceleration model does not limit the

ability of an application to scale, even to nearly 100,000

independently executing processors. 2. The extra steps

needed for communication among special-purpose cores

(i.e., forwarding messages through general-purpose cores)

do not eliminate the performance gains achieved by

exploiting the high compute rates of the special-purpose

cores.

Scalability analysis

To provide further evidence of the scalability of the

reverse-acceleration model, we examine in more detail the

data behind the ‘‘Hybrid’’ curve in Figure 7. First, we

reiterate that the Sweep3D input deck we used (5 3 5 3

400 subgrid size, 6 angles, 10 k-planes) represents a very

fine-grained problem. Each inner SPE (i.e., one not on an

edge or at a corner of the 2D process grid) sends and

receives 640 messages of only 2,400 bytes apiece each

iteration. At 433 ms per iteration (the time shown in

Figure 7 for 97,920 SPEs), this amounts to a rate of one

message every 677 ls per SPE. Globally, more than sixty

million 2,400-byte messages traverse the network every

433 ms. In addition to its large message volume, Sweep3D

algorithmically presents limited opportunities for

parallelism. Many SPEs are blocked in MPI_Recv() at

any given time due to the data dependencies inherent in a

2D wavefront pattern, as described in the section

‘‘Sweep3D,’’ earlier in this paper.

Although a coarser-grained input deck would present

CML and the reverse-acceleration model in a more

positive light, it is instructive to analyze the costs of

communication in this more hostile setting. Figure 8

dissects the times represented by the ‘‘Hybrid’’ curve in

Figure 7 into contributions from communication and

computation. With a single SPE, there is, by definition,

no time spent in communication. Within a blade (16

SPEs), SPEs communicate with other SPEs via the high-

speed EIB and Broadband Interface (BIF) links so only

4.1% of the Sweep3D run time is spent communicating.

Once SPEs start communicating across the PCIe bus to

SPEs in other blades (at the 32-SPE mark), over half of

the run time is spent in CML [and much of that represents

time being blocked in MPI_Recv()]. When InfiniBand

communication is introduced (64 SPEs), 71% of the run

time is spent in communication. At 8 nodes (256 SPEs)

and beyond, approximately 80% of the Sweep3D run time

is spent communicating.

While a 20% computational efficiency number may

sound low, it is encouraging that the ‘‘Computation’’

curve in Figure 8 levels off at only 8 nodes. This small

node count demonstrates once again that the reverse-
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acceleration model does scale, even when used to run an

application that produces a large volume of messages and

that exhibits limitations on parallelism. Another way to

interpret the 20% efficiency number is that a hypothetical

supercomputer containing 97,920 SPEs interconnected

directly with an infinitely fast network (zero latency and

infinite bandwidth) would run Sweep3D only five times as

fast as the actual Roadrunner system runs it with CML.

Conclusions

As hybrid systems gain popularity, the issue of

programmability becomes increasingly important. A

natural way to program a hybrid system is to have a

general-purpose processor core manage the computation,

offloading compute-intensive work to a special-purpose

core. We call this approach the accelerator model because

it treats a special-purpose core as an accelerator for pieces

of the computation that would normally run on a general-

purpose core. Unfortunately, the accelerator model

exhibits two shortcomings when viewed from the

perspective of porting an existing parallel but non-hybrid

code to a hybrid system. The first shortcoming is that the

hybrid code will normally require a different parallel

structure from the non-hybrid version. That is,

accelerating a sequential routine typically requires

parallelizing it independently of how the overall program

is parallelized. The second shortcoming of the accelerator

model is that the primary data structures of a program

are maintained in memory associated with the general-

purpose core. Consequently, data must be copied to and

from the special-purpose cores for every accelerated

function. The time spent performing these extra memory

copies may eliminate much of the performance gained by

computing on a special-purpose core. This was the case in

the version of Sweep3D that was written using the

accelerator model [18].

In this paper, we have argued for a new approach to

programming hybrid systems to overcome the

shortcomings of the accelerator model. We call this

approach the reverse-acceleration model because it

represents the opposite view from the accelerator model

of how one can program a hybrid system. While a

general-purpose core drives the computation in the

accelerator model, a special-purpose core drives the

computation in the reverse-acceleration model. While a

general-purpose core offloads compute-intensive

functions in the accelerator model, a special-purpose core

offloads control-, memory-, or I/O-intensive functions in

the reverse-acceleration model. While general-purpose

cores communicate with each other in the accelerator

model, special-purpose cores communicate with each

other in the reverse-acceleration model.

As a proof of the concept, we embodied the reverse-

acceleration model in a messaging layer called the Cell

Messaging Layer (CML), ported Sweep3D to it, and ran

the code on Roadrunner, currently the world’s largest

hybrid supercomputer and fastest supercomputer of any

type. Our results indicate that the reverse-acceleration

model is a practical way to port non-hybrid codes to a

hybrid system. The hybrid version of Sweep3D written to

the reverse-acceleration model preserves the structure and

much of the code from the non-hybrid version yet

significantly outperforms the accelerator-model version

of Sweep3D. We also demonstrated that the reverse-

acceleration model has no inherent scalability limitations:

Our version of Sweep3D performs well up to the 122,400

processor cores (general purpose plus special purpose) to

which we had access.

Those seeking to port non-hybrid codes to hybrid

systems should consider treating the system as a cluster of

special-purpose processors with associated general-

purpose processors instead of the other way around. The

benefits of this reverse-acceleration model include ease of

programming and, as we demonstrated for Sweep3D,

superior performance—both important features as hybrid

systems enter mainstream usage.
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