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Abstract

The design and implementation of a high performance
communication network are critical factors in determin-
ing the performance and cost-effectiveness of a large-
scale computing system. The major issues center on
the trade-off between the network cost and the impact
of latency and bandwidth on application performance.
One promising technique for extracting maximum ap-
plication performance given limited network resources is
based on overlapping computation with communication,
which partially or entirely hides communication delays.
While this approach is not new, there are few studies
that quantify the potential benefit of such overlapping
for large-scale production scientific codes. We address
this with an empirical method combined with a network
model to quantify the potential overlap in several codes
and examine the possible performance benefit. Our re-
sults demonstrate, for the codes examined, that a high
potential tolerance to network latency and bandwidth
exists because of a high degree of potential overlap.
Moreover, our results indicate that there is often no
need to use fine-grained communication mechanisms to
achieve this benefit, since the major source of poten-
tial overlap is found in independent work—computation
on which pending messages does not depend. This al-
lows for a potentially significant relaxation of network
requirements without a consequent degradation of ap-
plication performance.
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1 Introduction

The future of High Performance Computing (HPC) will
inevitably be driven by the insatiable demand for ever-
increasing computational power to meet the needs of
larger and higher-fidelity simulations in scientific com-
puting. Currently there are several proposed massively
parallel machines intended to deliver petaflop (PFlop)
or multi-PFlop performance, such as the machines be-
ing developed in DARPA High Productivity Computing
Systems program [HPCS |. Despite being close to pro-
viding such capability, the key challenge is to construct
such machines cost-effectively.

As the system size increases to tens of thousands of pro-
cessors and beyond, interprocessor communication per-
formance will become paramount in determining over-
all application performance. Therefore, system design-
ers may be forced to develop and utilize increasingly
fast networks to lessen communication delays. Unfor-
tunately, such networks tend to disproportionately in-
crease overall system cost.

To address this, an efficient approach may be to explore
software mechanisms to achieve better system utiliza-
tion and thus relax some requirements on the network.
One promising software technique is the overlapping of
communication and computation, or hiding communi-
cation delays using available computation subject to a
data dependency analysis [Leu et al. 1987]. This tech-
nique has been explored mainly in the context of im-
proving application performance by up to a factor of
two when compared with a non-overlapping case. In
contrast, our work here is to quantify an application’s
tolerance to lower network bandwidth and higher net-
work latency. This could lead ultimately to a reduction
in the cost of the network while having little impact on
application performance.

Key issues addressed in this research are the quan-
tification of the potential overlap that exists in sci-
entific codes, the impact on application performance



and on network requirements, and the determination
of whether fine-grained communication is important
for exploiting such overlap. We develop a systematic
method for identifying and quantifying potential overlap
and use that information to quantify the sensitivity of
application performance on network performance. Our
technique is abstract with respect to programming lan-
guage, communication layer, and the underlying hard-
ware.

Figure [1] is a depiction of the temporal progression of
a typical data-production, transmission, and consump-
tion cycle. The essential point is that because data is
aggregated for transmission, some data is potentially
available before it is transmitted, and some is consumed
only well after it is received. Depending on the order of
production and consumption, and internal data depen-
dencies, more finely-grained communication could yield
potential overlap.
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Figure 1: Percentage of Data Produced and Consumed
Over Time on Data Transmitted in a Point-to-point
Communication.

Our method is based on measuring the computation
time available in the application to hide communica-
tion delays and then providing an estimate of the poten-
tial performance improvement given networks of varying
performance characteristics. We illustrate the method
on several large-scale production scientific applications
using a 1,024-processor system. Results indicate that
these scientific codes contain a substantial amount of
unexploited overlap that could hide most communica-
tion delays.

The results indicate that the ability to hide commu-
nication delays is surprisingly independent of network
latency and bandwidth. In addition, the major source
of potential overlap comes from the availability of in-
dependent work—computation that does not generate
data to be communicated—rather than dependent work
in which the computation does effect the communicated
data.

The rest of this paper is organized as follows. Sec-
tion [2| reviews recent work dealing with the overlap-
ping of computation and communication. Section [3] de-
scribes the experimental approach used in our analysis.
Section [ details the results obtained from this analy-
sis for a number of large-scale applications. Section
concludes.

2 Related work

The benefit of overlapping computation and communi-
cation in parallel computing has been extensively stud-
ied in the past decade [Bell et al. 2006; |Chen et al. 2005;
Danalis et al. 2005 lancu et al. 2005; [Ke et al. 2005b;
Quinn and Hatcher 1996} [Sohn et al. 1996]. These stud-
ies empirically show that the benefit of overlapping is
significant but strongly depends on several factors in-
cluding the interconnection network and processor sup-
port, the parallel programming language, and the tech-
niques used to extract the overlap.

Currently there is excellent support to exploit the po-
tential overlap available in dependent work thanks to
recent development in programming languages for high
performance computing (such as UPC [Chen et al. 2005]
and Co-Array Fortran [Coarfa et al. 2003]) and hard-
ware support for addressing global data [Dunigan et al.
2005]. These provide light-weight one-sided communi-
cation, making fine-grained communication reasonably
efficient.

Analysis of the efficiency of parallel programming lan-
guages such as UPC and communication libraries such
as MPT in overlapping computation and communication
has shown that UPC allows for substantial performance
improvement when exploiting available dependent work
using fine-grained message transfers for some bench-
marks [Bell et al. 2006]. A similar study was performed
using the communication library TACCS with similar
conclusions [Danalis et al. 2005].

Two similar automatic runtime systems to exploit the
overlap found in dependent work have been empirically
evaluated [lancu et al. 2005; [Ke et al. 2005b]. Both
approaches exploit the overlap at the receiver side by
allowing the execution to proceed without waiting for
the entire data transfer to be completed. Additionally,
message pre-fetching techniques were explored in which
processing nodes pre-fetch remote data before the re-
mote node initiates a transfer [Liu and Abdelrahman
1998 Ke et al. 2005a]. Our approach is more general
than these because it considers taking advantage of both
independent and dependent work on both the sender
and receiver sides.

A substantial departure from previous studies is that



we focus on characterizing the potential overlap from
the application point of view without considering the
underlying network and communication software imple-
mentations. We argue that this analysis is more useful
for system designers because it facilitates prediction of
potential application performance while exploring the
network design space. In addition, previous work has
concentrated on the benefit of overlapping communi-
cation and computation for standard benchmarks; our
work complements those studies by evaluating the po-
tential overlap for large-scale production codes.

3 Calculating Potential Overlap

In this section we describe our approach to quantify-
ing potential overlap that can be used to hide com-
munication delays. In general we are concerned with
a single program multiple data (SPMD) programming
model that corresponds to the execution model of most
large-scale scientific applications. We consider two
forms of SPMD processing, namely concurrent and
pipelined [King et al. 1990]. In both forms, all nodes
typically process their own sub-grids followed by bound-
ary exchanges and possibly collective operations. The
boundary exchanges are usually performed using point-
to-point communication operations. In the concurrent
case, all processors can progress through a single time-
step without any inter-processor dependency, whereas
in the pipelined case a processor can only progress af-
ter receiving data from processors located earlier in the
pipeline.

To measure the amount of potential overlap it is impor-
tant to know when a datum is ready to transmit at the
sender and when a datum is first-needed at the receiver.
We refer to the time at which data is ready to trans-
mit as the produce time and the time at which it is first
needed as the consume time.

Based on the produce and consume times we can cal-
culate the potential overlap as shown in Figure [2| where
the data produce time occurs at time ¢0 and the possible
consume times occur at t1, t2, and t3, where time pro-
gresses in the downward direction on the vertical axis.
The time available for overlap is the difference between
the produce and consume times. In the case that the
consume time occurs at time ¢1, the datum is required
at the receiver before the datum is produced by the
sender and hence no overlap is possible, and similarly
when the consume time t2 is the same as the produce
time t0. When the consume time occurs at later time
t3 the time available for overlap is ¢3 - t0.

In this straightforward example of calculation of the po-
tential overlap it is assumed that the processing nodes
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Figure 2: Calculation of the Potential Overlap in a
Point-to-Point Communication.

are performing only computation between ¢2 and t3.
However, during this time the nodes may be involved in
additional communication operations that could block
execution, such as a collective or a blocking communi-
cation. In such cases the calculation of the potential
overlap should not include the time spent in such com-
munications. This is because communication operations
result in the sharing of the network, and thus they can
interfere with each other. The conservative approach
that we follow is to subtract the time required for these
communication operations when measuring the poten-
tial overlap. Note that some collective operations, such
as reduction operations, perform computation on the lo-
cal data before initiating the global reduction operation.
For these operations the computation time component
can be used in the calculation of potential overlap.

3.1 Communication and Computation Pa-
rameters

In order to compute potential overlap, applications are
instrumented to collect the following information during
their execution.

e Amount of data produced and consumed
(Np and N¢): the total data processed on a node
in the produce and consume subroutines (measured
in 8-byte words).

e Amount of data sent and received (Ng and
NR): the total amount of data exchanged when a
processor exchanges boundaries with other proces-
sors in the system using point-to-point communica-
tion operations (measured in 8-byte words). This
is obtained from the communication send/receive
calls.

¢ Produce and consume periods (Tp and T¢):
T'p is the average time interval between two consec-



utive data writes in the produce subroutine, and
similarly T is the average interval between two
data reads in the consume subroutine. These are
measured by dividing the total elapsed time in the
corresponding subroutine by the number of ele-
ments written or read for the data of interest.

¢ Produce and consume order (P(i) and C(i)):
The relationship between the order of data produc-
tion and data consumption is required to accurately
calculate the potential overlap. The function P(7)
defines the production order, and the function C(4)
defines the consumption order. In the case in which
P(i) = C(i) for all ¢, the data elements are pro-
duced in the same order in which they are con-
sumed. The worst case in terms of overlapping is
when P(i) = C(N¢g —i— 1), i.e., when the produc-
tion order is the reverse of the consumption order.
A complication to the definition of P(¢) and C(4)
is when temporary buffers are used, for example
within multiple software layers in an application,
which can alter the data ordering. In such cases, in-
direction functions, indexsenq(t) and index ey (1),
need to be known that effect the mapping between
the produce and consumed data.

e Additional independent computation time
(Tap and Tac): The average additional compu-
tational work occurring between the conclusion of
the produce subroutine and the send communica-
tion call (T4p), and the additional work between
the receive communication call and the consume
subroutine (Tac).

To measure these parameters we use an application-
level instrumentation library to provide accurate tim-
ing information as well as the other parameters on a
per-processor basis. Instrumentation calls are manually
inserted in the code. A cycle-accurate timer is used
on the test system. The overhead of the timer in the
application execution is 0.072 ns per measurement in
our system as described later in Section[4.1] In order to
minimize fluctuations due to cache misses and operating
system effects, average times are measured over samples
taken during execution and over all processors. Since in
a parallel execution the amount of data processed may
vary by processors, and thus the parameters Ng, Ng,
Np, and N¢c may be different on each processor, in our
analysis we show the values for the processors yield-
ing the maximum value for each. This represents the
worst case because the amount of data communicated
is the largest, so that it will be more difficult to over-
lap with computation. Similarly in the case of applica-
tions where the amount of data processed per processor
changes in the course of execution, such as in the appli-
cation SAGE-AMR, we show the maximum value over
the execution.

To illustrate the instrumentation, we consider part of
a typical application consisting of several subroutines
in which computation and communication take place
within a loop as shown in Figure [3] In this example A
is exchanged between processing nodes. A part of this
code performs computational work on data that is not
related to the data exchanged, referred to as additional
computational work. The produce subroutine is the last
subroutine where the data is written before it is sent.
In the example subroutine 3 is the produce subroutine.
Similarly, the consume subroutine corresponds to where
the data is first read after being received, subroutine 0
in the example. Note that the produce and consume
subroutines may be the same.

Ta
C\ Additional computational work 0

Tac ¢
Collective communication

c v

Computational subroutine 0

Ca that reads data A
Computational subroutine 1
that reads data A
Computational subroutine 2
that writes data B
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P() Computational subroutine 3
that writes data A
Tap ¢
N Additional computational work 1
S
N ;
index_ . (i) ™ Communication on data A
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indexrecv @)

Figure 3: Example Program Structure Showing Re-
quired Measurements.

3.2 Concurrent Data Parallel Applications

In concurrent SPMD applications, processors perform
the same operation at the same time but on different
subgrids, and dependencies between processors only ex-
ist at the end of a computation stage. According to
the model depicted in Figure [2, the concurrent model
corresponds to the case of data being consumed after
produced. This model occurs in large-scale applications
such as POP [Kerbyson and Jones 2005; |Jones et al.
2005, HYCOM [Halliwell 2004, Barker and Kerbyson
2005, and SAGE [Kerbyson et al. 2001].

The potential overlap is calculated using measurements
collected from an application execution as described in
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Figure 4: Example of Data Production and Consump-
tion for Concurrent SPMD Applications.

Section 3.1} Figure []illustrates a single communication
in the processing flow. The sender side consists of the
produce subroutine and any additional produce time.
In Figure |3| the additional produce time corresponds
to additional computational work 1. Similarly, the re-
ceiver side consists of the consume subroutine and ad-
ditional consume time. In Figure [3| the additional con-
sume time corresponds to the additional computational
work 0. The dotted horizontal line in Figure |4| repre-
sents a point-to-point communication. The location of
this serves as a reference point separating the sender
and receiver components. The time available for hiding
the communication of data element ¢ is given by

t(i) = Tap + Tac + Tpx (Np — P(i) — 1)+ Tc * C(i)

The component Tpx(Np—P(i)—1)+Tc+C (i) represents
the time available for hiding the communication within
the dependent work, and Tap + T4c corresponds to
hiding the communication delay using the independent
work. Note that the time available from the dependent
work is heavily dependent on the produce and consume
index orders.

An important consideration is the granularity required
for the message transfers. Three basic cases are consid-
ered. First, the data is sent during the produce sub-
routine as shown in Figure [] as transfer 0. In this
case, data are sent as soon as they are produced. This
case exploits the dependent work of the produce sub-
routine (Tp * (Np — P(i) — 1)) to hide communication
delays. A fine-grained message transfer is needed to
minimize the overheads of multiple message transfers.
Network latency and bandwidth should not be limiting
factors of performance, due to the small message sizes
and pipelined message transfers. However, the message
injection rate (the g parameter of the network model de-
scribed in Section and the overheads of sending and
receiving multiple messages may make this approach to
exploiting overlap inefficient.

Additional consume time

= ». data(NC—1)

The second case, transfer 1 in Figure[d corresponds to
sending the data after it is completely produced but the
data arrives at the receiver before the consume subrou-
tine. This case exploits the independent work available
(Tap+Tac). Unlike the previous case, there is no need
to use fine-grained message transfers because all nec-
essary data has been produced at the time of initiat-
ing the data transfer. We can take advantage of the
communication optimization based on aggregating data
into large messages to minimize communication over-
heads. Hiding communication delays with independent
work is important because the network injection rate
will not be a limiting factor and the aggregate commu-
nication overheads are not as high as with many smaller
messages. Thus this approach relaxes the requirements
placed on the communication subsystem, allowing for
a low network injection rate and higher communication
overheads. It is also likely that more independent work
than dependent work will be available.

Finally, the last case considered is similar to the pre-
vious one, but the data is received during the con-
sume subroutine. Here both independent and depen-
dent work of the consume subroutine are exploited
(Tap + Tac + To * C(i)). As before, there is no need
to use fine-grained message transfer because all data
has been produced before initiating the transfer. Nev-
ertheless, to exploit the dependent work in the consume
subroutine, a software or hardware mechanism may be
required to identify when the data is received [lancu
et al. 2005].

3.3 Pipelined Data Parallel Applications

In pipelined SPMD applications, processing nodes carry
out the same calculations on their data sub-grids but
with the added requirement that there is a dependency
in the processing flow. Processing nodes operate in a
pipeline: they process their sub-grid after receiving data
from nodes located earlier in the pipeline and send re-
sults to nodes further down it. This mode is exemplified
by wavefront applications such as Sweep3D [Hoisie et al.
2000} [Koch et al. 1992].

Since the receiving nodes wait on data for immediate
use, the model corresponds to the case of data being
consumed before it is produced (Figure . Therefore,
the resulting time available for overlap is zero while the
pipeline is being filled. Figure |5 illustrates the calcu-
lation of the potential overlap for these codes. The re-
ceiver is blocked at the consume subroutine waiting for
data from the sender. Meanwhile, the sender is execut-
ing the produce subroutine. In that model there is no
additional produce and consume times because the syn-
chronization for the completion of the data reception
is performed immediately after the data is produced at



the sender. In the case of concurrent SPMD applica-
tions this synchronization is performed later since both
the sender and receiver perform the same work at the

same time.
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Figure 5: Example of Data Production and Consump-
tion for Pipelined SPMD Applications.

The only potential overlap is the dependent work in the
consume subroutines. We have seen that there is no
time available for the first needed data, but the next
data can use the computational work on the previously
received data to hide the communication delays. A fine-
grained message transfer is required to exploit the de-
pendent work in the produce subroutine because data
needs to be sent as soon as it is produced. The ef-
ficiency of this approach strongly depends on several
factors. First is the ordering of the data between the
produce and consume routines. Recalling the previous
section, the worst scenario—where the first consumed
datum is last produced—will nullify the ability to over-
lap communication with computation for these applica-
tions. Second, the efficiency depends on the injection
rate of the network and the produce period (Tp) of the
data in order to evaluate whether or not the data is in-
jected into the network at least as fast as the receiver
needs it. Otherwise, the receiver will be blocked wait-
ing for data to be received. In order to analyze this

behavior the ratio —~&— should be evaluated.
maz(Tp,g)

3.4 Techniques to Maximize the Potential
Overlap

The amount of independent work exhibited by the ap-
plication can often be increased through code modifica-
tion in order to better hide communication delays. The
techniques explored in this paper are briefly described
below.

Consume period

e Subroutine re-arrangement: Computational
routines may be moved in the code to provide ad-
ditional produce and consume time. For example,
subroutine 2 may be moved after subroutine 3 in
Figure [3| increasing the additional produce time.
A data dependency analysis is required in order to
ensure correctness.

¢ Loop indexing: In domain decomposition appli-
cations, the domain is usually decomposed into in-
ner and outer regions |[Hiranandani et al. 1992].
Boundary data to be communicated may be pro-
duced earlier by updating the outer regions first
followed by the inner regions. This will increase
the additional produce time as well as the addi-
tional consume time. This technique requires re-
arrangement, of the loop indexing in the produce
and consume computation subroutines. A data de-
pendency analysis is again required in order to en-
sure correctness.

e Loop distribution: This technique separates in-
dependent computation from dependent computa-
tion in a single loop into multiple loops |Hiranan-
dani et al. 1992]. The result can be to increase the
additional produce and consume times.

In this analyzes we provide an estimate of the amount of
independent work available if these techniques were to
be implemented in the codes. We estimate the indepen-
dent work using subroutine re-arrangement by measur-
ing the computation time within each subroutine. In the
case of the loop indexring technique, the additional pro-
duce time available is estimated based on the produce
period and the interior data that will not be communi-
cated, Tp * N;pner, while the additional consume time
is estimated based on the consume period, Te * Ninner-
Finally, in the case of loop distribution, we measure the
time of a loop that only performs the independent cal-
culations in the application.

In the applications evaluated in this paper only POP
and SAGE implement techniques to overlap communi-
cation with computation. MPI non-blocking send and
receive operations are used to exploit the independent
work such as performing local copies and initializing
ghost cells. In this paper, we explore other sources of
overlap related to the computational core of the ap-
plication rather than just communication-related op-
erations since communication alone may not provide
enough overlap or may differ in other systems.

4 Experimental Results

We begin with a description of the parallel system that
served as the experimental platform. Next we describe



Table 1: Application Input Decks

Application Input Global domain (cells) Scaling mode Number of processors
HYCOM large.inp 4,500 x 3,298 x 26 Strong 1,006
POP x1 320 x 384 x 40 Strong 128
SAGE timing_h 36 million Weak 1,024
SAGE-AMR timing b 52-74 million Weak 1,024
Sweep3D mk=1 320 x 320 x 400 Strong 1,024

the model used to estimate the communication delays
when transmitting data through a given network. We
then describe several large-scale parallel applications.
For each application we analyze the potential overlap
and the sources from which overlap may be obtained.
Finally we evaluate the impact of overlapping on ap-
plication performance as a function of network perfor-
mance.

4.1 Experimental Set-up

The parallel computer used in the evaluation is repre-
sentative of current high-performance computing plat-
forms, with a peak performance of 4 TFlops. It is com-
posed of 256 dual-processor dual-core AMD Opteron
nodes, for a total of 1,024 processing cores. Each node
runs the Linux operating system. The nodes are con-
nected using a Voltaire 288-port InfiniBand 4x switch.
The processor’s clock speed is 2 GHz. Each core has
a 1 MB L2 cache, and each node has 4 GB of physical
memory.

A range of network performance characteristics are con-
sidered in order to analyze the influence of network per-
formance on the potential overlap. Bandwidths rang-
ing from 1 MB/s up to 5 GB/s, and latencies of 1us,
2us, 4ps, and 8us are considered. Though most of to-
day’s interconnects do not provide the higher-end per-
formance characteristics (bandwidth of 5 GB/s and la-
tency of 1us), such performance may be more common
in the near future, motivating the need for modeling
communication delays rather than measuring them in
real systems when evaluating the potential overlap. As
a reference point for today’s network performance, we
considered the performance of the MVAPICH [MVA |
message passing system on InfiniBand SDR 4x that de-
livers a network latency for small messages of 4 us, and
a uni-directional bandwidth of 950 MB/s for large mes-
sages.

4.2 Estimating the Communication Delays

To model the time when transferring the data through
the network using point-to-point communication op-

erations we use the communication model described
by [Bell et al. 2003]. This model captures the behav-
ior of non-blocking communication operations in cur-
rent interconnection networks. In this model, sending
a message between two processors is approximated by
EEL+ G x size, where size is the message size in bytes,
EFEL (end-to-end latency) is the the total time for a
message from the beginning of a send until receipt, and
G is the additional gap per byte in large messages. The
reciprocal of G is then effective maximum bandwidth
of a network channel. A parameter g is defined as the
elapsed time between two consecutive small messages—
the inverse of the message injection rate.

The resulting value for FEL is actually slighter lower
than the typical measured FEL from a ping-pong eval-
uation benchmark that includes the send and receive
overheads and the transport of the message, because
they are likely to overlap each other in current inter-
connection networks. We will use the terms EEL and
network latency interchangeably. In this model we are
assuming that there is no contention in the network,
where multiple messages are competing for the same
network channel.

Collective communication operations are modeled using
a binary “fan-in, fan-out” message passing strategy in
a binary tree structure which takes 2 x logs(N) x EEL
for small messages (typically the case for most of the
scientific applications), where N is the number of pro-
Cessors.

It is beyond the scope of this paper to analyze how
the potential overlap can be fully extracted from the
application using specific communication systems. We
assume that this overlap can be fully extracted as evi-
denced in recent studies [Lawry et al. 2002|. Basically,
the ability to exploit the potential overlap present in the
application is influenced by the capability of the net-
work hardware and message passing system to perform
the transfer concurrently while the processors compute.
Some commodity interconnection networks, such as In-
finiBand, already provide specialized hardware support,
such as DMA engines, and MMU’s (full memory man-
agement units) in the network interface cards. These
networks can perform a remote transfer from a source
application virtual address to a destination virtual ad-



Table 2: Measurements on Dependent Work

HYCOM POP SAGE SAGE-AMR Sweep3D
Parameter ubavg  pbavg  vbavg R Q vetrp vetrp phitb  phijb
Tp (ns) 28 32 28 11.6 10 5.5 7.9 1,050 184
To (ns) 43 43 43 9 2.5 22.4 24 1,050 45
N¢ (8-byte words) 12,100 12,100 12,100 | 1,248 1,248 | 36,424 127,104 10 10
Np (8-byte words) 11,236 12,100 11,664 | 1,248 1,248 | 35,096 71,952 10 10
Ng, Ng (8-byte words) | 11,232 11,232 11,232 | 352 352 36,424 127,104 10 10
Table 3: Measurements on Independent Work (time in ps)
HYCOM POP SAGE SAGE-AMR Sweep3D
ubavg pbavg wvbavg R Q vetrp vetrp phiib  phijh
Tap 0 576 282 2.15 2.13 0 0 0 0
Tac 0 0 0 0 3.36 0 0 0 0
Loop distribution 192 192 0 0 0 0 0 0 0
Produce loop indexing 0 27.7 12.2 | 10.3 8.9 0 0 0 0
Consume loop indexing 37.3 37.3 37.3 8 2.2 0 0 0 0
Re-arranging subroutines 0 0 0 0 0 1,943 3,061 0 0
Communications 0 0 0 2.8 2.8 0 0 0 0
y Total | 2290.3 833 331.5 [ 2325 19.39 [ 1,943 3,061 | 0 0 |
dress without processor intervention, substantially re- implements the main processing involved in Sy parti-
ducing the CPU overhead of sending messages. Low cle transport. The input decks for each application are

communication overhead is important, especially in the
case of exploiting the dependent work in the produce
subroutine, otherwise it negatively offsets the advan-
tages of overlapping.

The ability to overlap is also dependent on the mes-
sage passing system. MPI provides non-blocking
send /receive operations and the MPI-2 additionally pro-
vides one-sided communication operations, which allow
the overlap of communication and computation. Actual
realization strongly depends on the implementation of
the message passing system: whether implementation
makes full use of the network hardware, and whether
communications can progress independently of further
calls to the communication library.

4.3 Overlap Analysis

We examine four large-scale parallel applications. HY-
COM and the Parallel Ocean Program (POP) are both
ocean modeling codes that represent water regions as
3D regular grids. However, these codes differ in the
methods in which they model fluid flow and mixing in
regions of varying depth. SAGE is a hydrodynamics
code to simulate shock-wave propagation with the capa-
bility of using adaptive mesh refinement (AMR), where
unlike the other applications examined the amount of
data processed per processor may change during the ex-
ecution. Finally, Sweep3D is a kernel application which

summarized in Table For each of these applications
we collected the parameters described in Section
and the independent computation times that could be
extracted if the techniques described in Section |3.4| were
implemented, to give a total potential overlap. Tables
and |3| contain the parameters related to the dependent
and independent work, respectively.

We normalized the potential overlap (Toyeriap) to the
communication delays of the point-to-point operations

Toverlap . .
(Teomm-_point)s Teomm —pemi> 1 order to quantify how

much potential overlap is available relative to their com-
munication delays. A normalized overlap greater than
or equal to 1 means that the point-to-point related com-
munication delays can be fully overlapped. The normal-
ized overlap is useful for explore the robustness of the
potential overlap to variations in the system such as in-
creasing the processor performance, or the existence of
contention in the network. The influence of the proces-
sor performance can be viewed as decreasing the poten-
tial overlap latent in the application. For example, a
normalized overlap of 2 means that the potential over-
lap is still large enough to support a processor of twice
performance without incurring communication delays.

4.3.1 HYCOM

In HYCOM the barotropic computational routine mod-
els vertical fluid mixing and is the most time-consuming.



The boundaries exchanged consists of three data struc-
tures (pbavg, ubavg, and vbavg) at the beginning of each
iteration.

An interesting observation is that the amount of data
produced for the data structures pbavg and vbavg is
larger than the amount of data actually transmitted,
see Table [2l We can take advantage of this difference
by applying the loop indezring technique to first produce
the data that will be communicated, and then produce
the remaining data. This additional time can be used
to overlap communication with computation. Table
shows that this elapsed time is 27.7us for pbavg and
12.2us for wbavg. Similarly, the amount of data con-
sumed for the data structures is larger than the amount
of data actually transmitted. The resulting additional
time obtained using the loop indexing technique to first
consume the data that is not being communicated is
37.3 us for each of the data structures analyzed.

All three data structures are communicated simultane-
ously, thus there is potentially significant elapsed time
between the production of the first data and its trans-
mission. Similarly, there is potentially time available,
although less, between production of the second data
and its transmission. The resulting additional time on
the producer side is shown in Table[3] Note that no time
is available between production of the last data struc-
ture and transmission; however 576 us and 282us are
available between production and transmission (T4p)
of pbavg and vbavg, respectively.

Since no additional time is available, the communication
associated with wbavg is the most difficult to overlap
with computation. However, on the consumer side it is
possible to use the loop distribution technique to obtain
some available computation time. In this case, it is pos-
sible to hoist an independent calculation ahead of the
message reception operation, providing 192 us of com-
putation for communication overlap. Note that while
this is useful for hiding communication delays associ-
ated with ubavg and pbavg, it is not applicable to vbavg
because of a data dependency. Note that this analysis
is optimistic because we are assuming that there is no
overhead involved when implementing this optimization
technique in the code.

The total potential overlap is given in Table For
uwbavg, pbavg, and vbavg, these times are 229.3 us, 833 us,
and 331.5us, respectively. Figure @ shows the normal-
ized overlap for different bandwidths and latencies in a
generic network. As can be seen, the normalized over-
lap linearly increases as the network performance im-
proves, reaching 12 in the highest network performance
(bandwidth of 5 GB/s and latency of 1us). This is an
expected behavior because the resulting communication
delays are becoming smaller when the network perfor-

mance improves while the potential overlap remains the
same. Even in the experiment network (InfiniBand) the
normalized execution time achievable is still significant,
2.32.

43.2 POP

POP spends most of its time in a preconditioned con-
jugate gradient solver in the barotropic method which
iterates computing and communicating until a solution
is reached or 1,000 iterations have been performed. Sev-
eral preconditioned conjugate-gradient solvers are im-
plemented in the code, but the results presented in this
paper correspond to the PCG solver. In each iteration
of this solver POP exchanges its boundaries in two data
structures named R and (. The boundary exchange is
performed using two independent point-to-point com-
munication calls that are scattered throughout the code.
A reduction collective communication operation named
global_sum is performed immediately after each of these
communications using a summation operation. Inside
this function POP computes a local sum on the data
prior to calling to the MPI_ Allreduce that performs the
global summation operation among the nodes. This
summation on the local data can be considered an addi-
tional consume time that does not involve computation
on the communicated data, R and @), and is performed
after the point-to-point communication operation but
before the communicated data is first requested. The
time to perform this summation is 2.8 us (shown in Ta-

ble .

There is some additional independent computation time
after the corresponding produce subroutine (T4p) for
the data R and @, 2.15us and 2.13 us, respectively.
There is also an independent computation after the
point-to-point communication operation on the data @
before that data is requested in the consume subroutine
(Tac), providing 3.36 us.

Moreover, because the number of data elements trans-
mitted (352) is less than the number produced (1,248),
there is the possibility of extracting some overlap with
independent computation via loop indexing. The po-
tential overlap is 10.3us and 8.9us for R and @, re-
spectively. Similarly, the amount of data consumed is
greater than that communicated, so there is some addi-
tional independent time that can be extracted via loop
indexing. A total of 8 us and 2.2 us can be extracted for
R and Q.

As can be seen from Table [3] the total potential over-
lap for both data elements is 23.25us and 19.39 us, re-
spectively. These times are large enough to hide the
communication delays of the point-to-point communi-
cation operations. As can be seen in Figure [0 there
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Figure 6: Normalized Overlap for Each Application.




is a normalized overlap of 12.4 at the high end of the
considered network performance, while for the testbed
the normalized overlap of 2.78 is achievable.

An interesting observation for POP is that the nor-
malized overlap is very sensitive to the latency of the
network. The normalized overlap increases from 2.2 to
12.40 when the network latency is reduced from 8ps
to 1us (in the case a network bandwidth of 5 GB/s ).
This is because with the data input zI, running on 128
processors, the communication delays are mainly dom-
inated by the latency rather than the bandwidth.

4.3.3 SAGE

SAGE, like POP, is heavily dependent on the perfor-
mance of a conjugate-gradient solver subroutine, which
in this case is the CG solver. In it SAGE performs
exchanges using a point-to-point communication opera-
tion on a data structure named wvctrp. Unfortunately,
because this data is produced immediately before it
is transmitted, and is consumed immediately after it
is received, there is no additional independent com-
putation to hide the communication delays associated
with the transfer of the data. However, some indepen-
dent computation can be extracted by rearranged sub-
routines. By moving an independent subroutine typ-
ically executed before the point-to-point communica-
tion operation to after the communication call, 1,943 us
and 3,061 pus are available for overlap in SAGE and
SAGE-AMR, respectively. The communication delays
for SAGE are high because of the large amount of data
transmitted. However, the normalized overlap achiev-
able is large as shown in Figure [f] For a high per-
formance network the normalized overlap is 34.04 and
15.58, for SAGE and SAGE-AMR, and in the testbed
the normalized overlaps are still significant, 6.25 and
2.84, respectively.

4.3.4 Sweep3D

Sweep3D, unlike the previously examined applications,
is a pipelined SPMD application, meaning that commu-
nication and computation progresses through the multi-
dimensional processor array in a wavefront pattern.

Two data structures called phiib and phijb are commu-
nicated between processors using point-to-point com-
munication operations, and two primary loops, one to
update each data structure, provide the bulk of the com-
putation. For these applications there is no independent
work available to overlap with this computation time.

The only computation available for overlap is there-
fore related to work dependent on the data phiib and
phijb. The produce/consume period for phiib is 1,050
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Figure 7: Potential Overlap Time for Each Datum in
phiib.

ns which is much higher than the one corresponding
to phiygb which is 45 ns. For phigb it is important to
check the ordering of the produced and consumes data.
Fortunately this order corresponds to the best scenario,
p(i) = ¢(i) for all i. However, the value of m will
be dominated by the parameter g since in toddy’s in-
terconnection networks this parameter is unfortunately
larger (1 us) than the produce period, 45 ns, eliminating
the possibility of overlapping of phijb.

For phiib the key factor to exploiting the dependent
work is also in the ordering of the data. Since this data
is not needed until all data in phijb are finally produced
the model that follows the data phiib to overlap is much
like the one for concurrent SPMD applications with the
exception that there are no additional produce and con-
sume independent times (T4p and Tac). The depen-
dent work is defined by Tp * (Np — P(i) — 1) +Tc x C (7).
Figure[7]shows the resulting potential overlap calculated
for each data based on this formula. As can be seen,
there is a uniform computation time of 9.46 ps available
to hide the communication delays across all data. This
time yields a normalized overlap of 8.96 (Figure @ in
the high-end network performance scenario, while for
the testbed it is 2.31.

Note that although the dependent work can also be ex-
ploited for the other applications it is more efficient to
exploit only the independent work because the require-
ments to exploit the independent work to hide commu-
nication delays are simpler, and for those applications
independent work is sufficient to hide the communica-
tion.



4.4 Impact on Application Performance

To evaluate the impact of overlapping on performance
we normalize the total execution time to the time for
computation only, W, where Teomp is the
computation time and Ty, is the communication time
corresponding to both point-to-point messages and col-
lectives. This metric provides an indication of actual
execution time relative to an idealized execution time
in which effective communication delays are zero (full
communication overlap). Table |4 summarizes the com-
putation time for each application using the number of
processors specified in Table [I, Note that this compu-
tation time is not the total execution time of the appli-
cation, rather it is the time for a single iteration of the
part of the application code previously discussed. The
total running time of the applications will also depend
on the execution time of the other parts of the code.

Table 4: Computation Time

Application  Time (us)
HYCOM 2,588
POP 31.46
SAGE 5,577
SAGE-AMR 9,170
Sweep3D 10.08

Figure [§] shows the normalized overlapping and non-
overlapping execution times for the applications consid-
ering a network latency of 4us(current InfiniBand la-
tency). As can be seen for all the applications overlap-
ping converges faster than the non-overlapping case as
the network bandwidth increases. In the particular case
of HYCOM, overlapping can achieve the ideal scenario
of zero effective communication delays, even at very low
bandwidth (400MB/s), while the non-overlapping case
asymptotically converges only at much higher band-
widths. The significance of this result is that one of
the major benefits that overlapping provides is a reduc-
tion in the requirements in the network performance.
Note that POP and SAGE are not reaching the ideal
case even when the point-to-point communications are
fully overlapped because the collective communication
operations are not regarded as being possible to overlap
in this treatment. In the case of Sweep3D, the ideal
case is not reached because the point-to-point commu-
nication on the data phijb also cannot be overlapped, as
was previously shown

For the purpose of illustrating the bandwidth require-
ments of the application when overlapping, Figure [9]
shows the bandwidth requirements at the point that
overlapping achieves the same performance as non over-
lapping with a network bandwidth of 5 GB/s. The net-
work bandwidth is an order of magnitude lower than

that required when not overlapping for the network la-
tencies evaluated. These results demonstrate that over-
lapping becomes an important optimization technique
to relax the requirements in the network bandwidth.
The bandwidth requirements are decreasing when the
latency decreases, as can be clearly seen for Sweep3D,
because the bandwidth is more predominant in the com-
munication delays at lower network latencies, and thus
when overlapping we need more bandwidth to achieve
the same performance than when not overlapping.

Also, for the network latency requirements we can see a
significant relaxation when overlapping with respect to
the case of non overlapping. Table [f] shows the normal-
ized execution time when varying the network latency
assuming a fixed network bandwidth of 5 GB/s. As
is shown, the same performance can be achieved with
higher latency than when not overlapping. In particu-
lar, for Sweep3D the normalized execution time when
overlapping at a latency of 8us is the same (1.79) as
when not overlapping at 4us. However, for other ap-
plications such as POP, overlapping cannot achieve the
same performance as achieved when reducing the net-
work latency even when the point-to-point communica-
tion operations are fully overlapped. The reason is that
for this particular application the communication delays
are mostly dominated by the collective communication
operations as shown in Figure which shows the frac-
tion of the time that the applications spend on com-
putation, point-to-point communication, and collective
communication assuming the same network configura-
tion as the one considered in Figure [0} For these appli-
cations reducing the network latency has more impact
on performance than overlapping communication with
computation. Mechanisms to overlap the collectives as
well as the point-to-point communication operations are
needed in order to substantially relax the requirements
on the network latency.

In addition, we can see for these applications that over-
lapping becomes crucial to performance because simply
increasing the network bandwidth is insufficient to in-
crease performance. Applications that are latency sen-
sitive rather than bandwidth sensitive are the ones that
can substantially benefit from overlapping. For exam-
ple, for Sweep3D, the normalized performance achieved
when not overlapping at a high network bandwidth (5
GB/s) is 1.2 (see Table [5)) while overlapping can fur-
ther improve it to 1.1 at a significantly lower network
bandwidth. This result is important because of physical
lower bounds on network latency in large-scale comput-
ers because of the distance that signals must travel be-
tween processors. Then overlapping becomes a crucial
optimization to improve the application performance
rather being used as an optimization to relax the net-
work requirements.
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Figure 8: Normalized Execution Time for Each Application.




Table 5: Normalized Execution Time for Non Overlapping and Overlapping for Different Network Latencies

HYCOM POP SAGE SAGE-AMR Sweep3D
Latency (us) | Non over. Over. | Non over. Over. | Non over. Over. | Non over. Over. | Non over. Over.
1 1.02 1.00 2.37 2.27 1.02 1.01 1.03 1.00 1.20 1.10
2 1.02 1.00 3.70 3.54 1.03 1.02 1.03 1.01 1.39 1.20
4 1.02 1.00 6.37 6.08 1.06 1.05 1.05 1.03 1.79 1.39
8 1.03 1.00 11.71 11.07 1.12 1.11 1.09 1.06 2.59 1.79
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Figure 9: Bandwidth Requirements for Each Applica-
tion when Using Overlapping that Achieves the Same
Performance as Non-Overlapping with a Network of 5
GB/s.

5 Conclusions

We have analyzed the potential overlap between com-
munication and computation in several current large-
scale production applications. A method has been de-
veloped to evaluate the potential performance improve-
ment for those codes that does not require rewriting
the applications for a specific communication software
library or parallel programming language. The main
advantage is that it simplifies evaluating the benefit of
overlapping communication and computation for net-
works with various performance profiles.

An analysis of several large-scale applications executed
at a scale of 128 to 1,024 processors has shown that
they latently highly tolerant to network latency and
bandwidth. This is because the potential available over-
lap is large enough to hide the communication delays.
The time available for overlap is often as much as twice
what is required to effectively hide the communication
delays with current network technology. The signifi-
cance of this result is that the potential performance
of these codes is relatively independent of network per-
formance, allowing for a relaxation of network require-
ments. Moreover, the major source of overlap comes
from the independent work, eliminating the need for
fine-grained communication mechanisms.

@ Computation M Point-to-point communication [ Collective communication
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Figure 10: Percent of the Total Execution of the Time
Spend in Performing Computation, Point-to-point and
Collectives Communication Operations.

This result indicates that for a potentially large class of
real-world applications, future high performance com-
puting systems could use lower performance and more
cost-effective networks without negatively impacting
application performance if the overlap of communica-
tion with computation were fully exploited. In addi-
tion, overlapping can lead to improvements in applica-
tion performance on existing platforms. Overlapping
is critical in this regard, as these results also indicate
that increases in network bandwidth alone may not be
sufficient to increase workload performance.
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